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Abstract In a recent paper [E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez,
S. A. Santos, and Ph. L. Toint, Worst-case evaluation complexity for uncon-
strained nonlinear optimization using high-order regularized models, Math-
ematical Programming 163(1), 359–368, 2017], it was shown that, for the
smooth unconstrained optimization problem, worst-case evaluation complexity
O(ε−(p+1)/p) may be obtained by means of algorithms that employ sequential
approximate minimizations of p-th order Taylor models plus (p + 1)-th order
regularization terms. The aforementioned result, which assumes Lipschitz con-
tinuity of the p-th partial derivatives, generalizes the case p = 2, known since
2006, which has already motivated efficient implementations. The present pa-
per addresses the issue of defining a reliable algorithm for the case p = 3.
With that purpose, we propose a specific algorithm and we show numerical
experiments.
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1 Introduction

In 2006, Nesterov and Polyak [33] introduced a version of Newton’s method for
unconstrained optimization with worst-case evaluation complexity O(ε−3/2).
This means that the number of functional, gradient, and Hessian evaluations
necessary to obtain a gradient norm smaller than ε is at most c(f(x0) −
flow)ε−3/2, where x0 is the initial guess, flow is a lower bound for f , and c
is a constant that only depends on parameters of the algorithm and character-
istics of the problem. For obtaining this result one needs to assume Lipschitz-
continuity of second-order derivatives and the main tool of the algorithm is
the employment of cubic regularization, formerly addressed by Griewank [28].
Later, Cartis, Gould, and Toint [20,21,22] and other authors [17,24,26,27,29]
introduced practical algorithms with the same theoretical property employ-
ing cubic regularization [21,22], non-naive trust regions [24], or safeguarded
quadratic regularization [17] techniques.

In [9], it was proved that, by means of a generalization of the ARC (acronym
for Adaptive Regularization by Cubics) technique [21,22] and using subprob-
lems based on p-th Taylor approximations to the objective function with a
(p + 1)-order regularization, it is possible to obtain complexity O(ε−(p+1)/p),
if one assumes Lipschitz-continuity of the derivatives of order p. The present
paper investigates the practicality of an algorithm with this property, using
p = 3. In other words, in the present work it is introduced, implemented,
and evaluated an algorithm that possesses worst-case evaluation complexity
O(ε−4/3). At each iteration, the proposed algorithm computes a step that
approximately minimizes the third-order Taylor approximation to the objec-
tive function with a fourth-order regularization, and the step satisfies a suit-
able sufficient descent criterion. We provide a simple proof showing that the
worst-case complexity results of [9] are preserved and we describe a practical
implementation for the case p = 3, accompanied by numerical experiments.

This work is organized as follows. Section 2 introduces the proposed al-
gorithm. Well-definiteness and complexity results are given in Section 3. A
variant of the proposed algorithm that uses a different approach to update the
regularization parameter is introduced in Section 4. Numerical experiments
are presented and analyzed in Section 5. The last section gives some conclu-
sions and lines for future research.

Notation. ‖ · ‖ represents an arbitrary norm on Rn.

2 Model Algorithm

Consider the unconstrained minimization problem given by

Minimize
x∈Rn

f(x), (1)
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where f : Rn → R. Given s ∈ Rn, we denote by Tp(x, s) the p-th Taylor
polynomial of f(x+ s) around x, given by

Tp(x, s)
def
= f(x) +

p∑
j=1

1

j!
Pj(x, s),

where Pj(x, s) is the homogeneous polynomial of degree j defined by

Pj(x, s)
def
=

(
s1

∂

∂x1
+ . . .+ sn

∂

∂xn

)j
f(x).

We also define the regularized model

mp(x, s, σ)
def
= Tp(x, s) +

σ

p+ 1
‖s‖p+1, (2)

where the nonnegative scalar σ plays the role of the regularization parame-
ter. Algorithm 2.1 below is a high-order adaptive-regularization algorithm for
tackling problem (1) that, at each iteration, in the same spirit of [9], computes
an approximate minimizer of the regularized model (2). Meaningful variations
with respect to [9] are that (a) the algorithm proposed here accepts zero as a
value for the regularization parameter σ; (b) it employs a step control strategy
that, in practice, prevents the algorithm of evaluating the objective function
at points not prone to cause a significant decrease in the objective function;
and (c) the acceptance of the step is based on a (p + 1)-th order sufficient
descent condition instead of the actual-versus-predicted reduction condition
considered in [9]. In the following description, we present the main model al-
gorithm without stopping criterion, so that, in principle, the algorithm may
perform infinitely many iterations.

Algorithm 2.1: ARp+1 – Adaptive regularization of order p+ 1

Input. Let x0 ∈ Rn, p ∈ {1, 2, . . . }, α > 0, η1, η2 > 0, σlow > 0, θ > 0, J ∈ N,
and γ > 1 be given. Initialize k ← 0.

Step 1. Define σk,0 = 0 and initialize j ← 0.

Step 2. Compute, if possible, sk,j such that

mp(x
k, sk,j , σk,j) ≤ mp(x

k, 0, σk,j) (3)

and

‖∇smp(x
k, sk,j , σk,j)‖ ≤ θ‖sk,j‖p. (4)

If j = 0 and finding sk,j satisfying (3) and (4) was not possible, define
σk,1 = σlow, set j ← 1, and repeat Step 2.
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Step 3. If

j ≥ J or

(
Tp(x

k, 0)− Tp(xk, sk,j)
max {1, |Tp(xk, 0)|}

≤ η1 and
‖sk,j‖∞

max {1, ‖xk‖∞}
≤ η2

)
,

(5)
go to Step 4. Otherwise, define σk,j+1 = max{σlow, γσk,j}, set j ← j + 1,
and go to Step 2.

Step 4. If
f(xk + sk,j) ≤ f(xk)− α‖sk,j‖p+1, (6)

go to Step 5. Otherwise, define σk,j+1 = max{σlow, γσk,j}, set j ← j + 1,
and go to Step 2.

Step 5. Define σk = σk,j , s
k = sk,j , and xk+1 = xk + sk, set k ← k + 1, and

go to Step 1.

When it comes to the model minimization of Step 2, one should notice
that the model mp(x

k, s, σk,j) is a smooth function of s with bounded level
sets, except, perhaps, for j = 0, when σk,j = 0. Whenever mp(x

k, s, σk,j) has
bounded level sets, it has at least one global minimizer, at which its functional
value is upper bounded by mp(x

k, 0, σk,j) and its gradient vanishes. Therefore,
in this case, it is possible to find sk,j satisfying (3) and (4) within a finite
number of operations using an algorithm for unconstrained minimization that
possesses worst-case complexity.

Concerning the step control strategy of Step 3, a few considerations are in
order. Since Tp(x

k, 0) = f(xk), the condition

Tp(x
k, 0)− Tp(xk, sk,j)

max {1, |Tp(xk, 0)|}
≤ η1

in (5) discards, without computing f(xk + sk,j), steps sk,j for which the pre-
dicted decrease is much larger than a quantity proportional to the current value
of the objective function, since this may suggest that the model is not a good
approximation to the objective function. On the other hand, the condition

‖sk,j‖∞
max {1, ‖xk‖∞}

≤ η2 (7)

is in line with the classical step control that is generally used in Newtonian
methods. As with the previous condition, imposing (7) prevents evaluating the
objective function at points of the form xk+sk,j that are far from xk, at which
the model may not be a good approximation to the objective function. Both
conditions, that are empirical and have no relation with the theoretical results
concerning Algorithm 2.1, aim to discard unuseful steps, without evaluating
the objective function. The maximum number of times the step control may
be performed at every iteration k is stated as J . Since J ≥ 0 is an input
parameter of the algorithm, there is an upper bound (that does not depend
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on the iteration) on the number of times the regularization parameter σ may
be increased without evaluating the objective function. The practical impact
of the step control will be analyzed in the numerical experiments.

3 Well-definiteness and complexity results

Assumption A1 For all k ≥ 0 and j ≥ 0, there exist nonnegative scalars ξ1
and ξ2 such that the iterates xk and the trial steps sk,j satisfy

f(xk + sk,j)− Tp(xk, sk,j) ≤ ξ1‖sk,j‖p+1 (8)

and
‖∇f(xk + sk,j)−∇sTp(xk, sk,j)‖ ≤ ξ2‖sk,j‖p. (9)

Assumption A1 is fullfiled when f is p+1 times continuously differentiable
on Rn and the (p + 1)-th derivative of f is bounded; or when f is p times
continuously differentiable and the p-th derivative is Lipschitz continuous (see,
for example, [4]).

Assumption A2 For all k ≥ 0, if j = 0 and sk,0 satisfying (3) and (4) does
not exist, this fact can be detected within a finite number of operations; and,
for all j > 0, sk,j satisfying (3) and (4) can be computed within a finite number
of operations.

Assumption A2 is reasonable in the light of a practical unconstrained mini-
mization algorithm. As previously explained, in case the model mp(x

k, s, σk,j)
has bounded level sets, it is possible to find sk,j satisfying (3) and (4) within
a finite number of operations. Otherwise, the practical algorithm will detect
the unboundedness of the model by stopping when the model reaches a value
smaller than a pre-established threshold.

The next result is technical and it will be used in Lemmas 2 and 3.

Lemma 1 Suppose that Assumptions A1 and A2 hold for Algorithm 2.1. Then

σk,j ≥ (p+ 1)(ξ1 + α) (10)

implies that sk,j exists and it satisfies (6).

Proof The fact that σk,j > 0 means that j > 0 and, therefore, by Assump-
tion A2, sk,j exists. Then, by (8) (in Assumption A1) and (10),

f(xk + sk,j) ≤ Tp(x
k, sk,j) + ξ1‖sk,j‖p+1

= Tp(x
k, sk,j) +

σk,j

p+1‖s
k,j‖p+1 − σk,j

p+1‖s
k,j‖p+1 + ξ1‖sk,j‖p+1

= mp(x
k, sk,j , σk,j)−

(
σk,j

p+1 − ξ1
)
‖sk,j‖p+1

≤ mp(x
k, 0, σk,j)− α‖sk,j‖p+1

= f(xk)− α‖sk,j‖p+1

as we wanted to prove. �
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The lemma below shows that Algorithm 2.1 is well defined.

Lemma 2 Suppose that Assumptions A1 and A2 hold for Algorithm 2.1.
Then, for all k ≥ 0, sk is well defined.

Proof To show that sk is well defined means to show that sk can be computed
within a finite number of operations. By the definition of the algorithm, for all
k ≥ 0 and j ≥ 1, σk,j = γj−1σlow. Since γ > 1, this means that, for all k ≥ 0,
there exists a finite value jk ≥ max{1, J} such that (10) holds with j = jk.
By Assumption A2, sk,jk satisfying (3), (4), and (5) can be computed within
a finite number of operations and, by Lemma 1, sk,jk satisfies (6). This means
that sk = sk,j , for some j ≤ jk, can be computed within a finite number of
operations, concluding the proof. �

The next result is auxiliary to the complexity analysis of Algorithm 2.1.

Lemma 3 Suppose that Assumptions A1 and A2 hold for Algorithm 2.1.
Then, for all k ≥ 0,

σk ≤ σmax
def
= max

{
γmax{0,J−1}σlow, (p+ 1)(ξ1 + α)

}
(11)

and

‖sk‖ ≥
(
‖∇f(xk + sk)‖
ξ2 + θ + σmax

)1/p

. (12)

Proof On the one hand, if σk,j ≥ γmax{0,J−1}σlow then j ≥ max{0, J − 1} +
1 = max{1, J} and, therefore, (5) trivially holds. In this case sk,j exists by
Assumption A2. On the other hand, if σk,j satisfies (10) then, sk,j exists by
Assumption A2 and, by Lemma 1, it satisfies (3), (4), and (6). Thus, every
iteration k finishes with some σk,j satisfying

σk,j ≤ max
{
γmax{0,J−1}σlow, (p+ 1)(ξ1 + α)

}
from which (11) follows.

Let us write

‖∇f(xk +sk)‖ = ‖∇f(xk +sk)−∇smp(x
k, sk, σk) +∇smp(x

k, sk, σk)‖. (13)

Since
∇smp(x, s, σ) = ∇sTp(x, s) + σ‖s‖p s

‖s‖
, (14)

by substituting (14) in (13), the triangle inequality, (9), (4), and (11), we have
that

‖∇f(xk + sk)‖ ≤ ‖∇f(xk + sk)−∇sTp(xk, sk)‖+ ‖∇smp(x
k, sk, σk)‖+ σk‖sk‖p

≤ (ξ2 + θ + σmax) ‖sk‖p,

from which (12) follows. �
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Theorem 1 Suppose that Assumptions A1 and A2 hold for Algorithm 2.1,
and that f(x) ≥ flow for all x ∈ Rn. Then, given ε > 0, Algorithm 2.1 per-
forms, at most,⌊(

(ξ2 + θ + σmax)
p+1
p

α

)(
f(x0)− flow

ε
p+1
p

)⌋
+ 1 (15)

iterations and at most ⌊
logγ

(
σmax

σlow

)⌋
+ 1 (16)

functional evaluations per iteration to produce an iterate xk+1 such that
‖∇f(xk+1)‖ ≤ ε.

Proof At every iteration k, Algorithm 2.1 computes an iterate xk+1 = xk + sk

such that sk satisfies

f(xk + sk) ≤ f(xk)− α‖sk‖p+1

and (12). Therefore, if ‖∇f(xk+sk)‖ > ε then iteration k produces a decrease
of at least

fdecr
def
= α

(
ε

ξ2 + θ + σmax

) p+1
p

.

This decrease may occur at most b(f(x0) − flow)/fdecrc times. Therefore, for
some k ≤ b(f(x0) − flow)/fdecrc + 1, we must have ‖∇f(xk + sk)‖ ≤ ε, from
which (15) follows. By the definition of the algorithm and Lemma 3, we have
that, for all k ≥ 0 and all j ≥ 1, γj−1σlow = σk,j ≤ σmax, from which (16)
follows. �

4 A different rule for updating the regularization parameter

At the k-th iteration of Algorithm 2.1, the null regularization parameter
σk,0 = 0 is first considered. If it is not possible to compute sk,0, or if sk,0

is not accepted, the subsequent regularization parameters σk,j are of the form
γj−1σlow, with γ > 1 and σlow > 0 for j = 1, 2, . . . . This means that σlow is
a lower bound for the non-null regularization parameters considered in Algo-
rithm 2.1 at every iteration k. In the present section, we introduce another
algorithm that differs from Algorithm 2.1 in the updating rules for the regu-
larization parameter. The new updating rules are such that, on the one hand,
the null regularization parameter still is the first trial at each iteration. On the
other hand, there is no lower bound for the non-null subsequent regularization
parameters. In fact, there is a lower bound σini

k for the non-null regularization
parameters at iteration k, but it may be the case that σini

k → −∞ as k →∞.

Algorithm 4.1: ARUN
p+1 – Adaptive regularization of order p+ 1
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Input. Let x0 ∈ Rn, p ∈ {1, 2, . . . }, α > 0, η1, η2 > 0, σlow > 0, θ > 0, J ∈ N,
and 0 < γ1 < 1 < γ2 be given. Define σini

0 = σlow and initialize k ← 0.

Step 1. Define σk,0 = 0 and initialize j ← 0.

Step 2. Compute, if possible, sk,j such that

mp(x
k, sk,j , σk,j) ≤ mp(x

k, 0, σk,j) (17)

and

‖∇smp(x
k, sk,j , σk,j)‖ ≤ θ‖sk,j‖p. (18)

If j = 0 and finding sk,j satisfying (17) and (18) was not possible, define
σk,1 = σini

k , set j ← 1, and repeat Step 2.

Step 3. If

j ≥ J or

(
Tp(x

k, 0)− Tp(xk, sk,j)
max {1, |Tp(xk, 0)|}

≤ η1 and
‖sk,j‖∞

max {1, ‖xk‖∞}
≤ η2

)
,

(19)
go to Step 4. Otherwise, define σk,j+1 = max{σini

k , γ2σk,j}, set j ← j + 1,
and go to Step 2.

Step 4. If

f(xk + sk,j) ≤ f(xk)− α‖sk,j‖p+1, (20)

go to Step 5. Otherwise, define σk,j+1 = max{σini
k , γ2σk,j}, set j ← j + 1,

and go to Step 2.

Step 5. Define σk = σk,j , s
k = sk,j , xk+1 = xk + sk, and

σini
k+1 =

{
γ1σ

ini
k , if σk = 0,

γ1σk, otherwise,

set k ← k + 1, and go to Step 1.

The well definiteness and the complexity results for Algorithm 4.1 are given
below, following similar arguments to the ones used for Algorithm 2.1.

Lemma 4 Suppose that Assumptions A1 and A2 hold for Algorithm 4.1. Then

σk,j ≥ (p+ 1)(ξ1 + α) (21)

implies that sk,j exists and it satisfies (20).

Proof The proof follows exactly as the proof of Lemma 1. �

Lemma 5 Suppose that Assumptions A1 and A2 hold for Algorithm 4.1.
Then, for all k ≥ 0, sk is well defined.
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Proof By the definition of the algorithm, for all k ≥ 0 and j ≥ 1, σk,j ≥
γj−1

2 σini
k ≥ γj−1

2 γk1σ
ini
0 = γj−1

2 γk1σlow. Since γ2 > 1, this means that, for all
k ≥ 0, there exists a finite value jk ≥ max{1, J} such that (21) holds with j =
jk. By Assumption A2, sk,jk satisfying (17), (18), and (19) can be computed
in finite time and, by Lemma 4, sk,jk satisfies (20). This means that sk = sk,j

for some j ≤ jk can be computed within a finite number of operations, as we
wanted to prove. �

Lemma 6 Suppose that Assumptions A1 and A2 hold for Algorithm 4.1.
Then, for all k ≥ 0,

σk ≤ σ̂max
def
= γ

max{0,J−1}
2 max {σlow, (p+ 1)(ξ1 + α)} (22)

and

‖sk‖ ≥
(
‖∇f(xk + sk)‖
ξ2 + θ + σ̂max

)1/p

. (23)

Proof If σk,j satisfies (21) then j > 0 and, by Assumption A2, sk,j satisfy-
ing (17) and (18) exists. Moreover, by Lemma 4, sk,j also satisfies (20). Note
that assuming that σk,j satisfies (21) implies j ≥ 1 and that the satisfaction
of (19) may require, in the worst-case, j ≥ J , that would imply in J − 1
additional executions of Step 3, i.e. increasing the value of the regularization

parameter by a factor of γ
max{0,J−1}
2 , from which (22) follows noting that

the max with σlow comes from the definition of the algorithm. The upper
bound (23) on ‖sk‖ follows exactly as in Lemma 3 substituting σmax by σ̂max.
�

Theorem 2 Suppose that Assumptions A1 and A2 hold for Algorithm 4.1,
and that f(x) ≥ flow for all x ∈ Rn. Then, given ε > 0, Algorithm 4.1 per-
forms, at most,

kup =

⌊(
(ξ2 + θ + σ̂max)

p+1
p

α

)(
f(x0)− flow

ε
p+1
p

)⌋
+ 1 (24)

iterations and at most

2(kup + 1) +

⌊
logγ2

(
σ̂max

σlow

)
+ kup

∣∣logγ2(γ1)
∣∣⌋ (25)

functional evaluations to produce an iterate xk+1 such that ‖∇f(xk+1)‖ ≤ ε.

Proof The bound (24) on the number of iterations follows exactly as in The-
orem 1. For all k ≥ 0, let jk be such that σk = σk,jk . By the definition of the
algorithm, for all k ≥ 0, we have that (a) if jk = 0 then σini

k+1 = γ1σ
ini
k , and

(b) if jk > 0 then σini
k+1 = γ1σk,jk = γ1γ

jk−1
2 σini

k . Therefore, for all k ≥ 0, we

obtain σini
k+1 = γ1γ

max{0,jk−1}
2 σini

k . Thus, for all k ≥ 0, an inductive argument
yields

σini
k+1 = γk+1

1 γ
(
∑k

`=0 max{0,j`−1})
2 σini

0 .
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Since, on the other hand, by the definition of the algorithm, for all k ≥ 0,
σini
k+1 ≤ γ1σ̂max, it follows that, for all k ≥ 0,

k∑
`=0

max{0, j` − 1} ≤
⌊

logγ2

(
σ̂max

σlow

)
+ k

∣∣logγ2(γ1)
∣∣⌋ . (26)

By the definition of the algorithm, the number of functional evaluations at
every iteration k is jk+1. Then, the total number of functional evaluations up
to iteration k is given by

∑k
`=0(j`+1) =

∑k
`=0(j`−1+2) ≤

∑k
`=0(max{0, j`−

1}+2) = 2(k+1)+
∑k
`=0 max{0, j`−1}. Therefore, by (26), the total number

of functional evaluations up to iteration k is at most

2(k + 1) +

⌊
logγ2

(
σ̂max

σlow

)
+ k

∣∣logγ2(γ1)
∣∣⌋ ,

from which (25) follows replacing k by kup. �

5 Numerical experiments

We implemented Algorithms 2.1 and 4.1 with p = 2 and p = 3 in Fortran
2008. Numerical experiments were run in a computer with 3.4 GHz Intel R©

CoreTM i5 processor and 8 GB 1600 MHz DDR3 RAM memory, running ma-
cOS Sierra (version 10.12.5). Codes were compiled using Gfortran compiler of
GCC (version 6.3.0) with the -O3 optimization directive enabled.

In Algorithms 2.1 and 4.1, we arbitrarily set α = 10−8, σlow = 10−8,
θ = 100, γ1 = 0.5, and γ = γ2 = 10. Since analyzing the influence of the
step control strategy is one of the objectives of the numerical experiments, we
considered J ∈ {0, 10, 20}, η1 ∈ {10, 102, 103, 104}, and η2 ∈ {2, 3, 5, 10}. As a
stopping criterion for both algorithms, we considered

‖∇f(xk)‖∞ ≤ ε,

with ε = 10−8. Algorithms also stop if k > kmax = 1,000. In both algorithms,
models are minimized using Gencan [2,12,13,16]. All codes, as well as the
full tables with details of all the numerical results, are available at http:

//www.ime.usp.br/~egbirgin/.

5.1 Generalized Performance Profiles

Let M1, . . . ,Mm be m optimization methods whose performances on a set
of q problems P1, . . . , Pq need to be evaluated. Depending on the focus of the
evaluation, the functional value obtained by each method may be used in the
comparison or not. Although some authors believe that the capacity of finding
stationary points is the main goal to be evaluated, adopting the point of view
discussed in detail in [11] and [16, p.196], we consider in the present work that

http://www.ime.usp.br/~egbirgin/
http://www.ime.usp.br/~egbirgin/
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the functional value must be taken into account in the comparison. Assume
that when method Mi is applied to problem Pj it generates a sequence of
iterates {xkij}k∈Kij

, with the corresponding index set Kij (i ∈ {1, . . . ,m} for
the method and j ∈ {1, . . . , q} for the problem), and the associated quanti-
ties fkij and tkij , where fkij = fj(x

k
i ) is the value of the objective function fj

of problem Pj evaluated at the k-th iterate of method Mi and tkij is a metric

related to the (accumulated) cost of having obtained xkij (tkij may be CPU
time, number of functional evaluations, or any other performance metric).

For a given problem Pj , let

f jbest
def
= min

i∈{1,...,m}

{
min
k∈Kij

{
fkij
}}

. (27)

In this context, f jbest plays the role of an approximation to the global minimum
of problem Pj , and the global minimum could be used in its place if it were
known. Following [11], for a given tolerance εf > 0, we say that the method Mi

found an εf -approximation to a solution of the problem Pj if there exists
k ∈ Kij such that

fkij − f
j
best

max{1, |f jbest|}
≤ εf . (28)

In order to cope with the case of problems whose objective functions are un-
bounded from below within the feasible region, we also say that a method
Mi found a solution of the problem Pj if f jbest ≤ f−∞ with, let us say,
f−∞ = −1010, and, for some k ∈ Kij , f

k
ij ≤ f−∞, suggesting that the ob-

jective function of problem Pj is unbounded from below within the feasible
region, and that method Mi was able to detect this situation.

If a method Mi found an εf -approximation to a solution of the problem
Pj , we say that the cost of finding such an approximate solution is given by

tij(εf )
def
= min

k∈Kij

{
tkij | fkij satisfies (28)

}
. (29)

Otherwise, we say that tij(εf ) = +∞. Note that this measure of the effort
made by the method Mi to find an approximate solution (with precision εf )
is different (and presumably much smaller than) the total effort required for
the satisfaction of an underlying stopping criterion. Computing this measure
of effort is only possible if we have access to the whole sequence generated by
the method and not only to its final iterate or reported solution. Then, for a
given problem Pj , and a given tolerance εf , let

tjmin(εf )
def
= min

i∈{1,...,m}
{tij(εf )}. (30)

Note that we may have tjmin = +∞ if tij(εf ) = +∞ for i = 1, . . . ,m. This

will be the case if f jbest assumes the value of the known global minimum of
problem Pj , and none of the evaluated methods reach that value within the
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tolerance εf . On the other hand, if f jbest is defined as in (27), we have that

tjmin(εf ) < +∞.
Performance Profiles (PP) [25] constitute a well-established tool to analyze

the behavior of a set of methods when applied for solving a set of problems.
In PP, the efficiency and the robustness of method Mi may be evaluated by
analyzing the curve

Γ
εf
i (τ)

def
=

#
{
j ∈ {1, . . . , q} | tij(εf ) ≤ τtjmin(εf ) < +∞

}
q

, (31)

where #S denotes the cardinality of the set S. The value Γ
εf
i (1) is the propor-

tion of problems in which the method Mi was the most efficient in finding an
εf -approximation to a solution, whereas Γ

εf
i (τ), for τ > 1, is the proportion

of problems in which the method Mi was able to find an εf -approximation
to a solution with a cost up to τ times the cost demanded by the most ef-
ficient method. The value Γ

εf
i (+∞) is the proportion of problems for which

the method Mi was able to find an εf -approximation to a solution, indepen-
dently of the required effort, being thus a measure of the robustness of the
method Mi.

In [11], it was pointed out that the analysis described above strongly de-
pends on the choice of the tolerance εf used to determine whether a method
found an εf -approximation to a solution of a given problem or not. Moreover,
this dependency may impair the comparison if first- and second-order meth-
ods are being simultaneously compared, or if the methods being evaluated
have different stopping criteria. Based on these observations, Relative Mini-
mization Profiles (RMP) were introduced in [23,31]. In PP, the constant εf is
fixed. Similarly, in RMP, the constant τ , related to the tolerance with respect
to the cost of the most efficient method, is fixed. Then, for a fixed τ ≥ 1, the
RMP approach assesses the performance of the method Mi by the curve

Γ τi (εf )
def
=

#
{
j ∈ {1, . . . , q} | tij(εf ) ≤ τtjmin(εf ) < +∞

}
q

. (32)

The value Γ τi (εf ) represents the fraction of problems for which the method Mi

found an εf -approximate solution with a cost not greater than τ times the cost
of the most efficient method that also found an εf -approximate solution.

Comparing (32) with (31), it is easy to see that both curves are cross-
sections of the two-dimensional surface

Γi(τ, εf )
def
=

#
{
j ∈ {1, . . . , q} | tij(εf ) ≤ τtjmin(εf ) < +∞

}
q

, (33)

that we name Generalized Performance Profiles (GPP). Similarly to the anal-
ysis in [11], in which several curves (31) varying εf are considered, in [23] it
is suggested to consider varying τ (named β in [23]), constituting what the
authors called “β-RMP benchmark panel”. Thus, the surface (33) may be seen
as an extension of the proposals in [11] and [23].
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Clearly, the same approach may be developed for a comparison that fo-
cuses on the capacity of finding approximate stationary points with preci-
sion εg. Moreover, the approach applies to unconstrained minimization, and
to convex constrained minimization, if the methods being assessed preserve
the feasibility of the iterates. In the more general nonlinear programming set-
ting, feasibility may be handled by defining a problem to be successfully solved
only if feasibility is attained up to a given tolerance, as it is already done in
RMP and in PP (see, for example, [1,5,6,7,14,15]). Another possibility would
be introducing a third dimension to deal with the feasibility tolerance.

It should be noted that the curves Γ
εf
i (τ) are non-decreasing as a function

of τ . The Γ τi (εf ) curves, on the other hand, due to the definition of tjmin(εf )
in (30), do not necessarily possess a monotone pattern.

5.2 Numerical experiments with Moré, Garbow, and Hillstrom’s test set

In the numerical experiments of the present section, we considered all the 35
unconstrained minimization problems of Moré, Garbow, and Hillstrom’s test
set [32]. In [32], only first-order derivatives were made available. Second-order
derivatives were provided in [3]. To apply Algorithms 2.1 and 4.1 with p = 3,
we computed third-order derivatives of all the 35 problems of the test set. The
implementation details are described in [8].

In a first experiment, we aim to evaluate the influence of the step control
strategy, and of the updating rule for the regularization parameter in the
behavior of the algorithms. With this purpose, we compare the behavior of
Algorithms 2.1 and 4.1 with p ∈ {2, 3} and J ∈ {0, 10, 20}. Since numerical
experiments showed that, when J > 0, the performance of the algorithms is
not very sensitive to variations of η1 ∈ {10, 102, 103, 104} and η2 ∈ {2, 3, 5, 10},
only numerical results with η1 = 103 and η2 = 3 will be reported. Figures 1
and 2 present a comparison using generalized performance profiles for the cases
p = 2 and p = 3, respectively, using the number of functional evaluations as
performance metric. Figure 1a corresponds to performance profiles with εf =
10−6 for the case p = 2. Its left-hand side shows that, for p = 2, Algorithm 4.1 is
more efficient than Algorithm 2.1 and that variants with J ∈ {10, 20} are more
efficient than variants with J = 0. The legend obeys the efficiency order, from
the most to the least. The right-hand side of the figure shows that there are
no meaningful differences in the robustness of the variants (the existing small
difference corresponds to a single problem). The “almost constant” curves in
Figure 1b, that never cross each other, show that the efficiency of the methods
(displayed on the left-hand side of Figure 1a) do not depend on the arbitrary
choice εf = 10−6, whereas the “almost constant” curves in Figure 1c show that
the robustness of the methods (displayed on the right-hand side of Figure 1a)
also do not depend on the arbitrary choice εf = 10−6. Figures 2a–2c show that
similar results also hold for the case p = 3. The apparent lack of robustness of
the variant of Algorithm 2.1 with p = 3 and J = 0 in Figure 2a is, in fact, lack
of efficiency. (Note that the abscissa stops at τ = 6.) It should be noted that
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the efficiency of Algorithm 4.1, when compared against Algorithm 2.1, does not
depend on the lack of a lower bound for the non-null regularization parameters,
but relies on the fact that each iteration starts with a regularization parameter
close to the successful one from the previous iteration, promoting a reduction
in the number of functional evaluations.

A note on the usefulness of the curves Γ τ (εf ) displayed in Figures 1b–
c and 2b–c is in order. Figures 1b and 2b correspond to τ = 1 and, thus,
display the variation of the efficiency of the methods (i.e. Γ εf (1)) as a function
of εf . Figures 1c and 2c correspond to τ =∞, displaying the variation of the
robustness of the methods (i.e. Γ εf (∞)) as a function of εf . The four graphics
show “almost constant” curves that practically never cross each other. As a
result, by ranking the methods by their efficiency or their robustness, their
relative positions within the ranking would not depend on the choice of εf .
This is because the methods being compared here are in fact variations of
the same method, they all use second-order information, and they all share
the same stopping criterion. The situation might be different if methods of
different nature were being compared, as, for example, methods that use first-
and second-order information, or methods that consider different stopping
criteria. See, for example, [11, p.360, Fig. 5a–b] and [23, p.26, Fig. 6].

We now turn our attention to the question on whether using a third-order
Taylor polynomial model with a fourth-order regularization term is more effi-
cient than using a second-order model with a third-order regularization term.
With this purpose, we compare the performance of Algorithm 4.1 with J = 20
and p ∈ {2, 3}. Figure 3 depicts a comparison using generalized performance
profiles with the number of functional evaluations as performance metric,
whereas Table 1 presents the detailed results. Figure 3a shows that both vari-
ants are equally robust, and that when third-order derivatives are used, the
method is much more efficient. Figure 3a shows that Algorithm 4.1 with p = 3
is more efficient than Algorithm 4.1 with p = 2 because the former uses fewer
functional evaluations in approximately 91% of the problems, whereas the lat-
ter uses fewer functional evaluations in around 34% of the problems. (There
are ties in approximately 25% of the problems.) On the other hand, in Fig-
ure 3a, at τ ≈ 3, both curves collapse. Roughly speaking, this means that the
variant with p = 2 never uses more than three times the number of functional
evaluations required by the variant with p = 3. Note that these figures re-
fer to the effort demanded by the methods to find a solution with precision
εf = 10−6, while the figures in Table 1 refer to the effort demanded to satisfy a
stopping criteria. Figures 3b and 3c show, respectively, that the efficiency and
the robustness observed in Figure 3a do not depend on the arbitrary choice of
εf = 10−6.

In Table 1, the first four columns identify a problem from the Moré, Gar-
bow, and Hillstrom’s test set [32], n being the number of variables of a function

of the form f(x) =
∑m̂
i=1 fi(x)2. In the remaining columns of the table, f(x∗)

denotes the functional value at the final iterate; ‖∇f(x∗)‖ denotes the sup-
norm of the gradient at the final iterate; #it and #f denote, respectively, the
demanded number of iterations and of functional evaluations; and “Time” is
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the CPU time in seconds. From the figures in the table, the spreading values
(min, 25%,median, 75%,max) for the measure functional evaluations per iter-
ation are (1.05, 1.13, 1.31, 1.59, 2.00) for p = 2, and (1.02, 1.2, 1.33, 1.65, 8.14)
for p = 3. Consequently, the advantage of the case p = 3 in terms of number
of functional evaluations, as observed in Figures 3a-3c, is due to a reduction in
the number of iterations, being not associated with more effectiveness of the
computed step. It is worth noting that, in the case p = 2, the amount of iter-
ations with pure Newton steps (i.e. with σk = 0) within the total demanded,
for the aforementioned five spreading values, is (0.18, 0.65, 0.90, 1.0, 1.0). In
the case p = 3, we have used σk = 0 in fewer iterations, being the spreading
values of the fraction of such an amount upon the total number of iterations
given by (0.02, 0.31, 0.64, 0.93, 1.0). The differences may be related to the fact
that, when p = 2, the exact solution of the quadratic model (with null reg-
ularization parameter) can be computed exactly, whereas, in the case p = 3,
an approximate solution is computed iteratively. Moreover, in the latter case,
there is no way of avoiding the iterative solver to diverge. In fact, in Table 1,
the four results with a star in the column named ‖∇f(x∗)‖ correspond to in-
stances in which the iterative solver failed in computing sk,j satisfying (3)-(4)
or (17)-(18). When the iterative solver is applied to the model minimization,
the stopping criterion (4) or (18) is sought; but stopping achieving an imposed
maximum number of iterations, or by lack of progress is also possible. In this
cases, the algorithms proceed by increasing the regularization parameter as
described at Step 2. There are three cases marked with stars corresponding to
runs in which σk,j ≥ 1020 and the method was unable to compute a step sk,j

satisfying (3)-(4) or (17)-(18), and a single case (problem BDF) that stopped
due to lack of progress, as ‖sk,j‖ became too tiny.

5.3 A large-scale problem

In this section, we consider the (feasibility) problem of packing N identical
small spheres with radius r > 0 within a large sphere of radius R ≥ r. By
packing we mean that the small spheres must be placed within the large sphere
without overlapping. (See, for example, [10,18,19].) Variables of the problem
are the centers c1, . . . , cN ∈ R3 of the small spheres. If we assume, without loss
of generality, that the large sphere is centered at the origin of the Cartesian
coordinate system, the problem can be modeled as

Minimize
x∈R3N

f(x), (34)
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Table 1 Numerical results of the experiments with Algorithm 4.1 (p ∈ {2, 3} and J = 20).

Problem n m̂
Algorithm 4.1 (p = 2 and J = 20) Algorithm 4.1 (p = 3 and J = 20)

f(x∗) ‖∇f(x∗)‖ #it #f Time f(x∗) ‖∇f(x∗)‖ #it #f Time

1 ROS 2 2 1.281e−30 4.4e−14 22 32 0.08 2.619e−27 4.5e−13 13 18 0.07
2 FRF 2 2 4.898e+01 2.5e−13 7 8 0.04 4.898e+01 9.3e−13 5 6 0.03
3 PBS 2 2 0.000e+00 0.0e+00 101 159 0.32 2.415e−30 3.1e−15 53 63 0.32
4 BBS 2 3 0.000e+00 0.0e+00 44 46 0.17 0.000e+00 0.0e+00 56 57 0.18
5 BEA 2 3 1.080e−27 1.4e−13 14 15 0.03 3.944e−31 5.3e−15 8 9 0.04
6 JSF 2 10 1.243e+02 5.2e−12 10 11 0.03 1.243e+02 4.0e−12 6 7 0.06
7 HFV 3 3 2.183e−21 7.4e−10 12 16 0.06 1.409e−22 2.1e−10 7 8 0.05
8 BAR 3 15 8.214e−03 8.9e−09 10 12 0.04 8.214e−03 3.6e−12 7 8 0.04
9 GAU 3 15 1.127e−08 3.1e−09 2 3 0.01 1.127e−08 2.4e−16 2 3 0.00

10 MEY 3 16 8.794e+01 9.4e−05∗ 205 372 0.75 8.794e+01 3.0e−04∗ 257 339 3.11
11 GUL 3 10 5.546e−18 6.9e−09 34 50 0.14 8.690e−21 1.2e−09 20 28 0.08
12 BTD 3 10 6.524e−23 4.9e−12 26 28 0.07 3.081e−32 2.5e−16 15 18 0.05
13 PSF 4 4 1.283e−12 4.3e−09 21 22 0.04 5.199e−13 2.4e−09 14 19 0.09
14 WOD 4 6 6.309e−30 8.0e−14 41 62 0.15 6.437e−29 5.2e−14 38 50 0.20
15 KOF 4 11 3.075e−04 1.7e−10 11 14 0.05 3.075e−04 2.8e−12 10 12 0.05
16 BDF 4 20 8.582e+04 2.9e−10 8 9 0.02 8.582e+04 2.0e−04∗ 7 57 0.15
17 OS1 5 33 5.464e−05 2.9e−11 42 67 0.20 5.464e−05 2.5e−10 33 35 0.22
18 BIG 6 13 7.083e−15 6.8e−10 46 56 0.16 1.125e−14 1.7e−09 19 33 0.07
19 OS2 11 65 4.013e−02 2.1e−09 16 21 0.08 4.013e−02 4.8e−10 17 26 0.09
20 WAT 6 31 2.287e−03 6.3e−13 12 13 0.03 2.287e−03 3.8e−11 11 13 0.07
21 ERO 10 10 1.887e−24 1.7e−11 22 40 0.08 4.095e−20 1.6e−10 23 34 0.12
22 EPO 12 12 4.624e−12 4.4e−09 21 22 0.04 2.312e−12 4.5e−09 20 25 0.09
23 PE1 4 5 2.249e−05 1.3e−09 38 64 0.12 2.249e−05 1.0e−09 34 57 0.17
24 PE2 4 8 9.376e−06 5.1e−10 103 183 0.35 9.376e−06 8.2e−09 48 74 0.33
25 VDF 10 12 1.744e−26 2.6e−12 14 15 0.03 3.596e−18 3.7e−08∗ 9 13 0.13
26 TRI 10 10 2.795e−05 6.8e−09 16 29 0.05 2.795e−05 3.2e−13 7 12 0.06
27 BAL 40 40 5.286e−18 1.6e−09 5 6 0.02 4.198e−22 1.5e−11 4 7 0.28
28 DSB 10 10 1.857e−24 1.8e−13 3 4 0.01 7.999e−25 1.4e−12 3 4 0.01
29 DSI 10 10 2.034e−27 4.8e−14 5 6 0.02 5.788e−29 8.4e−15 3 4 0.01
30 BRT 10 10 2.001e−23 2.3e−11 6 7 0.02 6.177e−19 6.3e−09 4 5 0.01
31 BRB 10 10 2.523e−21 4.7e−10 8 9 0.02 1.046e−22 8.6e−11 5 6 0.05
32 LFF 10 10 0.000e+00 0.0e+00 1 2 0.01 0.000e+00 0.0e+00 1 2 0.01
33 LF1 10 10 2.142e+00 1.6e−11 1 2 0.01 2.142e+00 1.6e−11 1 2 0.01
34 LFZ 10 10 3.647e+00 5.5e−12 1 2 0.01 3.647e+00 7.4e−12 1 2 0.01
35 CHE 8 8 3.516e−03 9.4e−11 13 19 0.07 3.516e−03 1.5e−09 10 25 0.08

where x = (cT1 , . . . , c
T
N )T and

f(x) =

N∑
i=1

N∑
j=i+1

max
{

0, (2r)2 − ‖ci − cj‖22
}4

︸ ︷︷ ︸
overlapping between the small spheres

+

N∑
i=1

max
{

0, ‖ci‖22 − (R− r)2
}4
.︸ ︷︷ ︸

fitting within the large sphere

(35)
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A solution of the packing problem corresponds to a solution of problem (34)
at which f vanishes.

At each iteration, Algorithms 2.1 and 4.1 with p = 3 compute an approxi-
mate minimizer of the regularized model m3 defined in (2), whose Hessian is
given by

∇2
sm3(x, s, σ) = ∇2

sT3(x, s) +∇2
s

[σ
4
‖s‖4

]
.

Since a Newtonian method is used to approximately minimize model m3, effi-
ciently tackling large-scale instances of problem (34) depends on the sparsity
of ∇2

sm3, for which necessary conditions are the sparsity of the second- and
third-order derivatives of f , and sparsity of the regularized term of the Hes-
sian. Although second- and third-order derivatives of f in (35) are structurally
dense, they are numerically sparse and can be efficiently computed when the
points ci are “well distributed in the space” (see [19] for details). We now turn
our attention to the sparsity of the regularized term of the Hessian or, in other
words, to the choice of an adequate norm for the regularization term. If ‖ · ‖
represents the Euclidean norm then we have

∇2
s

[σ
4
‖s‖4

]
= 2σssT + σ‖s‖22I,

a potentially dense matrix, due to the term ssT . On the other hand, if ‖s‖ =
‖s‖4 = (

∑n
i=1 |si|4)1/4 then

∇2
s

[σ
4
‖s‖4

]
= 3σdiag(s)2,

where diag(s) is the diagonal matrix whose diagonal elements are s1, . . . , sn.
Thus, for the numerical experiments of the current section, we considered
‖ · ‖ = ‖ · ‖4 for the regularization term.

We remark that we have not run Algorithm 4.1 with p = 2, and the regu-
larization term stated by the Euclidean norm for this class of problems, due to
the structurally dense nature of the Hessian of the associated model obtained
with these choices. Moreover, for p = 2, although setting the regularization
term with the ‖ · ‖3 would ensure sparsity for the model, the lack of differen-
tiability becomes an issue. Therefore, we have just considered Algorithm 4.1
with p = 3 for the tests of the current section.

As pointed out in [16, §13.1], the kind of packing problem being consid-
ered is in the heart of the strategies of Packmol [30], a package for building
initial configurations for molecular dynamic simulations. In this context, the
radii r and R follow the relation R ≈ r 3

√
N/0.3, meaning that the small

spheres occupy approximately 30% of the volume of the large sphere. There-
fore, in the numerical experiments, we considered six instances with N ∈
{1,000; 2,000; 4,000; 6,000; 8,000; 10,000} unitary-radius small spheres (i.e. r =
1) and R as specified in Table 2. We compared the performance of Algo-
rithm 4.1 with p = 3 against Algencan [16]. In this case (unconstrained mini-
mization), Algencan reduces to Gencan [2,12,13], that is the method used in
the software Packmol. In the table, f(x∗) denotes the functional value at the



18 E. G. Birgin et al.

final iterate; #it and #f denote, respectively, the demanded number of itera-
tions and of functional evaluations; and “Time” is the CPU time in seconds.
The figures in the table show that both methods found equivalent solutions to
the packing problem and that, although Algencan is faster than Algorithm 4.1
with p = 3, the later uses around 15% of the number of functional evaluations
used by Algencan. Solutions are depicted in Figure 4.

Table 2 Details of the numerical experiments with large-scale instances of the packing
problem.

N R
Algorithm 4.1 with p = 3 Algencan

f(x∗) #it #f Time f(x∗) #it #f Time

1,000 14.93 4.844e−13 46 76 18.26 4.820e−13 99 555 1.58

2,000 18.82 7.625e−12 71 128 82.80 2.559e−13 118 684 3.83

4,000 23.71 3.775e−12 83 144 149.94 8.556e−14 177 1126 6.99

6,000 27.14 1.431e−11 112 199 625.21 1.039e−13 196 1347 12.47

8,000 29.88 1.394e−11 118 207 792.38 1.889e−13 131 852 14.27

10,000 32.18 6.808e−11 156 282 1704.38 1.304e−13 246 1861 37.47

6 Conclusions

A practical algorithm that uses regularized third-order models for uncon-
strained optimization problems was introduced, implemented, and tested in
this work. At variance with [9], the algorithm introduced here allows the use of
zero regularization parameter, besides employing a step control strategy, and
possessing the same worst-case complexity bounds. Numerical experiments
with classical problems from the literature, and with an illustrative large-scale
packing problem with a practical relevance in the context of molecular dynam-
ics were given.

The numerical experiments showed that Algorithm 4.1 with p = 3 uses, in
general, fewer functional evaluations than Algorithm 4.1 with p = 2, which
may be considered a version of Newton’s method with cubic regularization.
The number of iterations employed by Algorithm 4.1 with p = 3 is also smaller,
in general, than the one employed by Algorithm 4.1 with p = 2. However, it
must be warned that, at each iteration, the algorithm with p = 3 evaluates
third-order derivatives of the objective function, whereas in the case p = 2, one
only evaluates first- and second-order derivatives. The difference in computer
time between the two choices strongly depends on the form of the objective
function. The consequence of these facts is that p = 3 should be preferable to
p = 2, from the computer time point of view, only if the cost of functional
evaluations strongly dominates both the cost of computing third-order deriva-
tives, and the cost of solving the subproblems. Unfortunately, in our present
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implementation, the cost of solving the subproblems is very high, and domi-
nates the computer time. Indeed, profiling the CPU time in an additional run
with problems from Table 1 having variable dimension, namely problems 21
to 31, setting n = 500, we observed that solving the subproblems demanded
98.19% and 91.82% of the total CPU time for p = 2 and p = 3, respectively. In
this additional run, the computation of the third-order derivatives demanded
8.13%, amounting to 99.95% of the demanded CPU time.

The main conclusion of this work is that the use of p = 3 instead of
the Newtonian choice p = 2 will be advantageous only if better methods for
minimizing the regularized subproblems become available. The fact that the
regularized subproblem with p = 3 is a quartic polynomial could represent
an interesting feature but, up to now, we could not take advantage of such a
structure.
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25. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Mathematical Programming 91(2), 201–213 (2002)

26. Dussault, J.P.: ARCq: A new adaptive regularization by cubics. Optimimization Meth-
ods and Software 33(2), 322–335 (2018)

27. Grapiglia, G.N., Yuan, J., Yuan, Y.: On the convergence and worst-case complexity of
trust-region and regularization methods for unconstrained optimization. Mathematical
Programming 152(1), 491–520 (2015)

28. Griewank, A.: The modification of Newton’s method for unconstrained optimization by
bounding cubic terms. Tech. Rep. NA/12, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, Cambridge, England (1981)

29. Mart́ınez, J.M., Raydan, M.: Cubic-regularization counterpart of a variable-norm trust-
region method for unconstrained minimization. Journal of Global Optimization 68(2),
367–385 (2017)

30. Mart́ınez, L., Andrade, R., Birgin, E.G., Mart́ınez, J.M.: PACKMOL: A package for
building initial configurations for molecular dynamics simulations. Journal of Compu-
tational Chemistry 30(13), 2157–2164 (2009)

31. Mitchell, T.: Robust and efficient methods for approximation and optimization of sta-
bility measures. Ph.D. thesis, Department of Computer Science, New York University,
New York (2014)
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Fig. 1 Cross-sections of the generalized performance profiles for Algorithms 2.1 and 4.1
with p = 2. The legend obeys the efficiency order, from the most to the least. (In (b), the
curves of Algorithm 2.1 with J = 10 and J = 20 almost coincide. In (c), the curves of
Algorithm 2.1 with J = 0 and J = 10 are identical, as well as the curves of Algorithm 4.1
with J = 10 and J = 20.)
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Fig. 2 Cross-sections of the generalized performance profiles for Algorithms 2.1 and 4.1
with p = 3. The legend obeys the efficiency order, from the most to the least. (In (b), the
curves of Algorithm 2.1 with J = 0 and Algorithm 4.1 with J = 0 are identical, as well as
the curves of Algorithm 2.1 with J = 0 and J = 10 and the curves of Algorithm 4.1 with
J = 0 and J = 10.)
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Fig. 3 Cross-sections of the generalized performance profiles for Algorithm 4.1 with p ∈
{2, 3} and J = 20. The legend obeys the efficiency order, from the most to the least.
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(a) N = 1,000 (b) N = 2,000 (c) N = 4,000

(d) N = 6,000 (e) N = 8,000 (f) N = 10,000

Fig. 4 Solutions of the packing problems with increasing dimensions.
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