
An Authentication Middleware for Squid Proxy-Cache:
a Single Sign-on Approach

John Lenon Cardoso Gardenghi
Universidade São Francisco, USF

Itatiba, Brazil
Email: john.gardenghi@live.saofrancisco.edu.br

Marcelo Augusto Gonçalves Bardi
Universidade São Francisco, USF

Itatiba, Brazil
Email: marcelo.bardi@saofrancisco.edu.br

Abstract—The identification process in network environ-
ments consists of knowing who is using a resource in order
to aggregate security, integrity and control to it. However, the
diversification of resources in such environments implies a set
of credentials for the same user as well as the requirement
of authentication as many times as the resources have to be
accessed. In this context, Squid is an interesting tool to work
because it allows the use of a third-part authentication engine,
which is referred as helper. By this way, the objective of this
work is to develop a new scheme of secure and centralized
authentication for Squid proxy-cache, with strong support in
single sign-on (SSO) strategy, optimizing safety and usability in
the use of this resource. This scheme is based on a distributed
application that eliminates the direct interaction between Squid
identification engine and client that requests access, centraliz-
ing the authentication and identification process in a part that
we call Middleware Server. It was observed a tradeoff between
security and usability in the employment of SSO strategy,
particularly because the usage of a central user database is
the ideal scenario.

Keywords-authentication; single sign-on; Squid Proxy-Cache;

I. INTRODUCTION

Authentication is a very important issue in computer
environments, because it introduces security and identifica-
tion to such environments, making it possible to do access
control and accounting. In this context, authentication is
a crucial factor, since an user-based method is the most
common strategy to implement access control. Additionally,
the management of multiple user-names and passwords is
not only an annoying aspect of the current Internet, it is
also one of the most serious security weakness [1].

Squid is a proxy-cache (or web-cache) system widely
used by network administrators to provide Internet access
control and optimize Internet bandwidth utilization. Squid
authentication works as follows: when the client (the user)
wants to access the Internet, Squid requests its credentials,
which is supplied by the user input and is sent by Hypertext
Transfer Protocol (HTTP). Squid currently supports many
authentication methods, grouped into four classes: basic,
digest, NT LAN Manager (NTLM) and negotiate [5]. As
authentication sources, we also have many options, such
as file, database, Lightweight Directory Access Protocol

(LDAP), Server Message Block (SMB), Network Informa-
tion Service (NIS) and Pluggable Authentication Modules
(PAM). However, NTLM and Negotiate are strategies that
work only with Microsoft Active Directory platforms, for
this reason, the main methods used are basic and digest.

The basic method supports many authentication sources,
including the aforementioned ones. The disadvantage of this
method is that user-name and password are sent over HTTP
without any encryption. The digest method, on the other
hand, supports only files and LDAP, and the credentials
are sent over the HTTP protocol with encryption. But these
methods have two problems that play the main role of this
work: the credentials are sent over the HTTP protocol (on
every HTTP request from the client) and it requires user
interaction to supply them each time the web browser is
opened (or some application that requires internet access).

Actually, these two issues represent problems due to some
factors. Firstly, the ideal authentication source for Squid
Proxy-Cache should be an unique user database that is
used for other purposes, thus only one credential would
be used by a single client to access the resources needed.
From this point of view, the credentials transmission through
the HTTP protocol may represent a security issue, since
if the credential is discovered an inappropriate access to
other resources can be granted. The main solution presently
adopted in this case is to create a different, separate user
database for Squid. This is not a good solution because it
generates a set of credentials for a same user. So, from the
administration point of view, Single Sign-on (SSO) would
be a potential solution. Using SSO, a user authenticates
itself only once and is automatically authenticated for other
resources he/she needs access. Secondly, this is a usability
problem, because the user has to supply its credentials every
time he/she needs to access Internet. This is a problem for
the user and the administrator, since many softwares do not
support the input of user and password to access the Internet.

In this context, it is presented a new authentication scheme
for Squid Proxy-Cache based on any user source with LDAP
support, by developing a middleware application in order
to answer to identification and authentication requests from
Squid instead of the client answer by itself. This middleware



is a distributed application that can be easily deployed in
a network environment, based on a client-server approach,
with strong support on SSO concepts, that will be addressed
in the next section.

II. THEORETICAL PROPERTIES

It is important to present some theoretical properties to
guarantee the agreement on the terminology used on this
paper.

A. Authentication terminology

We follow De Clercq [2] and adopt the following
infrastructure-related terms:

• Authentication servers are the machines that provide
authentication functions, refers to the physical part.

• Authentication authorities are the entities responsible to
perform authentication functions, refers to the logical
trust-concept part.

• Authentication infrastructure is the set of authentication
servers and authorities, which provide authentication
services.

Access control is the mechanism used to protect network
resources. It includes three processes [6]:

1) Authentication: often referred as identification, that
consists in providing an identity to the client that is
requesting access, and authentication itself, the process
of verification and validation of the user identity.

2) Authorization: grant access to some resource based on
the identity of the requesting user.

3) Accounting: provides auditing of the users actions and
requests, also called auditing.

The user is identified in a database by an unique identity,
also referred as User ID, and proves its authenticity by
providing an evidence related to its identity, also referred
as Password. This pair is called credential. It is important to
mention that many other types of credentials than the pair
user/password exist, such as smart cards and biometric iden-
tification. But in this work we consider only user/password
way of identification. The process in which the user supply
its credentials and the authentication infrastructure offers the
authentication service based on this input is called logon
process.

B. Single Sign-On

Recalling from the introduction, SSO is the mechanism
that provides an unique way of authentication for the client,
that has access granted to any resource that is needed. Pasha-
lidis and Mitchell [3] present two main type of SSO systems:
pseudo-SSO and true SSO systems. Our middleware consists
in a pseudo-SSO system, with some modifications, since we
are not concerned about storing the users credentials in this
system, but this only works as an “authentication helper” to
the Squid Proxy-Cache.

SSO is an interesting strategy to be adopted in a network
environment, because it is a good trade-off between security
and usability. SSO comes in favour of network adminis-
trators in the sense that an unique user database is used
for many applications. In this context, SSO may represent
a security issue, in two ways: first, from the availability
point of view, if this database becomes unavailable, the
access to many services would be injured and, finally, from
the information security itself, since if someone discovers
the user password, this one will have inappropriate access
to many resources. But internet access is a feature that is
closely related to just one user identity. It is not desirable that
user has one credential just to access internet. Furthermore,
internet access authentication is supposed to be something
transparent to the user, thus an application that favors
usability is desired.

III. METHODOLOGY

In this work, we use resources provided by Squid Proxy-
Cache to purpose a third-part application, that we refer as
middleware, to offer an alternative authentication service
based on SSO proposal and improve the security and us-
ability in opposite of the actual authentication scenario in
Squid.

As mentioned earlier, when a client requests access,
Squid asks for its credentials, which is received by HTTP
protocol based on the input of the requesting user (the
userID and password pair). Squid does not authenticate users
by itself, it sends the received credentials to a program
called “authentication helper”. This program validates the
user identity and returns a message to Squid. Our main
point is to change this way of authentication so that the
communication with the client is minimized or made in a
different manner, by developing a new authentication helper.
This proposal consists in two approaches:

1) If the user is already authenticated in an authentication
infrastructure, the SSO approach is used so that a
SSO client is deployed and used by the middleware to
retrieve the current authenticated user credential.

2) Otherwise, a secure interface is offered such that the
client authenticates itself into the middleware. The
middleware is responsible to do the logon process and
verify the user authenticity against a pre-configured
authentication authority with LDAP support, validat-
ing the given user credentials.

On the next section, we present the main results of this
proposal.

IV. RESULTS

To achieve the aimed authentication engine, we divide our
proposal in four parts:

A) The middleware server;
B) A SSO client;
C) A secure web interface for user logon;



Figure 1. Main Communication Scheme

D) A communication interface between the middleware
server and Squid.

We present these parts in the following sections, conclud-
ing the ideas putting it all together and describing some
computational properties dealt during the development.

A. The Middleware Server

When a client requests access to internet, Squid essentially
identify this client by its IP address. Based on this informa-
tion, middleware server will try to retrieve current logged
in user on this IP address. If no user is found, middleware
server throws an error message to Squid. Due to this strategy,
the direct communication between the Squid server and the
client is eliminated, and the middleware server does the
work.

This task is done in two ways. First, middleware server
tries to contact the SSO client in this address, which is
expected to return the user logged in or the absence of
one. Second, it searches a cache that contains the users that
logged into the middleware server through the secure web
interface.

Therefore, the middleware server is the kernel of this
engine and uses the other three parts to communicate with
the client and the Squid server. This scheme is illustrated in
Figure 1.

B. The SSO Client

The SSO client is responsible for answering requests
from the middleware server about the logged in user on a
workstation. It is a customizable part, middleware server is
not concerned about which application runs as SSO client,
neither the language that it was written. The main role of
the SSO client is to send to the middleware server a string
containing the current logged in user or a string informing
that no user is logged in the workstation.

It is important to highlight that the SSO client is not
concerned about the logon process, neither with credentials,
the client is supposed to be or not to be properly logged into
an authentication authority already.

In this work, a case study was done with Novell networks.
It is a favorable environment because the client uses an
application called Novell Client to log in. Novell Client
assures the authenticity of the logged in user. As Novell
provides a couple of libraries to communicate with this
application, it is possible to recover this user. This is the
main idea of SSO client. In this context, a C application
was made in order to retrieve the current logged in userID
and send it to the middleware server.

C. The Secure Logon Interface

This is a simple web interface, written in PHP, whereby
the user logs in with its credentials (the user/password pair).
The application then performs the logon process against
the LDAP user database and, finally, insert the user in the
middleware cache.

The middleware cache is a folder that contains the files
created by this interface, whose content is the user ID, its
time of login and its IP address. The middleware server
processes this directory and stores the information of these
files in the memory. The user will have to authenticate again
after the time of login expires. Notice that no passwords
are stored in these files, since the user identity is already
validated.

D. The Squid-Middleware Interface

This is a Perl script that receives the requests from
Squid server and sends them to the middleware server,
returning the answer to the Squid server. Actually, this acts
as an “authentication helper” for Squid proxy-cache (see
Wessels [7, Chapter 12]).

This is also a customizable part. This can be adjusted to
attend to security policies requirements. The essential is that
this script shall communicate Squid server and middleware
server. In the current implementation, if a user-name is
retrieved from a workstation, this script also verify the
participation of this user in a group, to improve the access
control. In this context, Squid is concerned about groups,
and not users themselves. With this, the script also make
LDAP queries to the authentication authority.

This middleware was developed to run under Unix tech-
nology, but since it has been written in Java, it also can run
on Windows platforms. The Squid-Middleware Perl interface
searches the middleware server by its IP address and change
information through network sockets, so the system can be
easily distributed in separate machines.

Also many Linux resources were used to accomplish the
operation of this engine. For the secure web console, HTTPS
was used, and some special configurations in Apache web
server. An external ACL configuration was done in Squid
to use the Perl interface as authentication helper, and also
the use of “deny info” pages in order to redirect the access
denied information to the secure logon interface.



(a) On a basic authentication scheme.

(b) Using middleware server.

Figure 2. Wireshark HTTP captures on both scenarios. Notice that the
Proxy-Authorization header field is not present in the middleware scheme
anymore, since Squid is not communicating with the client directly.

Additionally, the middleware has one configuration file in
order to define some parameter, namely logs directory, cache
directory and logon time to live. But two configurations are
noteworthy: these are the client timeout and the use of SSO.
The first one refers to the maximum time that middleware
server tries to communicate with SSO client. If this time
expires, middleware server concludes that no SSO client is
running on the target machine. The second parameter enable
to the administrator the choice of using or not the SSO client,
in this case, the source of authenticated users will be the
middleware cache only.

E. Results and Discussion

The running application complied with the main ideas of
this project. Both problems presented in the Introduction of
this article were solved: with this scheme running, the user
does not need to supply its credentials every time that Squid
requires them and these are not sent through HTTP protocol
anymore, as illustrated in Figure 2. It was also observed that
Novell eDirectory integration allowed that all changes can be
introduced only by the administrator, a difference that may
contribute to greater security and control over compliance
with institutional policies [4].

From the security point of view, the present proposal mit-
igates many vulnerabilities from the current Squid authenti-
cation scenario. Credentials are not stored in the middleware
server neither transmitted through HTTP protocol. User
identification proceeds in two ways: by the SSO client, the
engine that retrieves the userID logged in a client (no user
interaction required), or through the secure authentication
interface, where the user provides its credentials only once,
valid for a certain period of time. By the use of this strategy,

we avoid passwords being transmitted through the network,
as Squid does in basic and digest methods.

Another interesting problem was solved. Some applica-
tions need access to Internet but does not support the supply
of credentials by the user. It is required by a common
implementation of authenticated Squid. So, in these cases,
the network administrator need to add many exceptions
to Squid rules in order to grant direct access to such
application. It works, but in direct access auditing is not
done. In our proposal, transparent authorization is done, so
any application that needs access to Internet will have it
granted if the user is already authenticated to middleware
server, and this access will be properly audited.

V. CONCLUSION

An interesting tradeoff between usability and security was
noticed in SSO implementation, as discussed in Section II-B,
particularly in this case, in which a central user database
is the ideal scenario. The development of a distributed
application was also worth, since the middleware server, the
Squid server and the authentication authority can be running
in different physical machines without problems.

ACKNOWLEDGMENT

We are indebted to two anonymous referees whose com-
ments helped us to improve the present paper.

REFERENCES

[1] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and
L. Tobarra, “Formal Analysis of SAML 2.0 Web Browser
Single Sign-On: Breaking the SAML-based Single Sign-On
for Google Apps”. In: 6th ACM Workshop on Formal Methods
in Security Engineering, 2008.

[2] J. De Clercq, “Single Sign-On Architectures”. In: Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2002.
Vol. 2437, pp. 40-58.

[3] A. Pashalidis and C. J. Mitchell, “A taxonomy of single sign-
on systems”. In: Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2003. Vol. 2727, pp. 249-264.

[4] L.M. Prevedello, K.P. Andriole, R. Roobian, and R. Khorasani,
“Integration of the Medical Imaging Resource Center into a
Teaching Hospital Network to Allow Single Sign-on Access”.
In: Informatics in Radiology. Radiographics, 2009. Vol. 29,
pp. 973-979.

[5] K. Saini, Squid Proxy Server 3.1. Birmingham: Packt Publish-
ing, 2011.

[6] D. Todorov, Mechanics of User Identification and Authoriza-
tion: Fundamentals of Identity Management. Florida: Auer-
bach, 2007.

[7] D. Wessels, Squid: The Definitive Guide. Sebastopol: O’Relly
Media, 2004.


