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Abstract

The evaluation complexity of general nonlinear, possibly nonconvex, constrained opti-
mization is analyzed. It is shown that, under suitable smoothness conditions, an ε-approximate
first-order critical point of the problem can be computed in order O(ε1−2(p+1)/p) evaluations
of the problem’s function and their first p derivatives. This is achieved by using a two-phases
algorithm inspired by Cartis, Gould, and Toint [8, 11]. It is also shown that strong guar-
antees (in terms of handling degeneracies) on the possible limit points of the sequence of
iterates generated by this algorithm can be obtained at the cost of increased complexity. At
variance with previous results, the ε-approximate first-order criticality is defined by satisfy-
ing a version of the KKT conditions with an accuracy that does not depend on the size of
the Lagrange multipliers.

Key words: Nonlinear programming, complexity, approximate KKT point.

1 Introduction

Complexity analysis of numerical nonlinear optimization is currently an active research area
(see, for instance, [17, 18, 3, 9, 6, 8, 12, 15, 21, 14]). In this domain, the worst-case (first-
order) evaluation complexity of general smooth nonlinear optimization, that is the maximal
number of evaluations of the problem’s objective function, constraints, and their derivatives
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that is needed for obtaining an approximate first-order critical point, has been the subject of
recent papers by Cartis, Gould, and Toint [8, 12, 11]. In the first two of these contributions,
it is shown that a two-phases trust-region based algorithm needs at most O(ε−2) evaluations of
these functions (and their gradients) to compute an ε-approximate first-order solution, that is
either an ε-approximate scaled first-order critical point of the problem or, as expected barring
global optimization, an infeasible approximate critical point of the constraints’ violation. By “ε-
approximate scaled first-order critical point”, we mean a point satisfying the first-order Karush-
Kuhn-Tucker (KKT) condition on Lagrange multipliers up to an accuracy which is proportional
to the size of the multipliers. The use of second derivatives was subsequently investigated in [11],
where it was shown that a similar two-phases algorithm needs at most O(ε−3/2) evaluations of
the problem functions, gradients, and Hessians to compute a point satisfying similar conditions.

The purpose of this paper is to extend these results in two different ways. The first is to
consider unscaled KKT conditions (i.e. where the size of the Lagrange multipliers does not
appear explicitly in the accuracy of the approximate criticality condition) and the second is to
examine what can be achieved if evaluation of derivatives up to order p > 2 is allowed. We show
below that a two-phases algorithm needs a maximum number of evaluations of the problem’s
functions and derivatives up to order p ranging from O(ε1−2(p+1)/p) to O(ε1−3(p+1)/p) to produce
an ε-approximate unscaled first-order critical point of the problem (or an infeasible approximate
critical point of the constraints’ violation), depending on the identified degeneracy level. The
extension of the theory to arbitrary p finds its basis in a proposal [4] by the authors of the present
paper which extends to high order the available evaluation complexity results for unconstrained
optimization (see [10, 17, 18]).

The paper is organised as follows. Section 2 states the problem more formally, describes a class
of algorithms for its solution, and discusses the proposed termination criteria. The convergence
and worst-case evaluation complexity analysis is presented in Section 3 and the complexity
results are further discussed in Section 4. Conclusions are finally outlined in Section 5.

Notations: In what follows, ‖ · ‖ denotes the Euclidean norm and, if v(x) is a vector function,

v(x)+
def
= max[v(x), 0] where the maximum is taken componentwise. ∇v(x) will denote the

gradient of a function v defined on IRn with respect to its variable x. The notation [x]j denotes
the j-th component of a vector x whenever the simpler notation xj might lead to confusion.

2 The problem and a class of algorithms for its solution

We consider the optimization problem given by:

min
x∈IRn

f(x)

s.t. cE(x) = 0,
cI(x) ≤ 0,

(2.1)

where f is a function from IRn into IR and cE and cI are functions from IRn to IRm and IRq,
respectively. We will assume that all these functions are p times continuously differentiable. We
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now define, for all x ∈ IRn, the infeasibility measure

θ(x)
def
= ‖cE(x)‖2 + ‖cI(x)+‖2, (2.2)

and, for given υ > 0, its associated level set

L(υ)
def
= {x ∈ IRn | θ(x) ≤ υ}.

Moreover, given t ∈ IR, we define

Φ(x, t)
def
= θ(x) + [f(x)− t]2+ for all x ∈ IRn,

where the scalar t is the target. We use the notation ∇Φ(x, t) to denote the gradient of Φ(x, t)
with respect to x.

The FTarget (Feasibility and Target following) algorithm defined on the following page is
inspired by that proposed in [11] and computes a sequence of iterates xk by means of outer
iterations indexed by k = 0, 1, 2, . . . . For obtaining the outer iterate xk+1, the FTarget algo-
rithm uses a given (inner) Unconstrained Minimization (Um) algorithm which computes inner
iterations indexed by j = 0, 1, 2, . . . by using derivatives of its objective function up to order p.
Consequently, inner iterates will be denoted by xk,j .

It is clear that the FTarget algorithm is in fact a class of algorithms depending on the specific
choices of the derivative order p ≥ 1 and on the Um minimizer adapted to this choice.

2.1 The meaning of the stopping criteria

We now discuss the nature of the point returned by the FTarget algorithm as a function of the
stopping criterion activated. We start by outlining the main points, leaving a detailed discussion
for the following subsections.

Stopping at Step T4 means that an approximate KKT (AKKT) point has been found. Stopping
at Step F2 has two possible meanings: (i) an infeasible stationary point of the infeasibility may
be identified in the limit; or (ii) a situation analogous to the one represented by stopping at
Step T3 has happened. The interpretation of stopping at Step T3 depends on a weak condition
on the tolerances εP and εD in the limit and, more significantly, on the choice of the function ψ.
For three different choices of ψ, it will be shown that stopping at Step T3 means that: (i) an
εP-feasible point z has been found such that the gradients of active constraints at z are not
uniformly linear independent (with non-negative coefficients for the inequality constraints); (ii)
a feasible point which does not satisfy the Mangasarian-Fromowitz constraint qualification exists
in the limit; or (iii) a feasible point which does not satisfy the  Lojasiewicz inequality exists in
the limit. (These claims are precisely discussed below.) We may therefore conclude globally
that, for the three considered choices of ψ, FTarget always finds an unscaled approximate
KKT point under suitable “non-degeneracy” assumptions.
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Algorithm 2.1: The FTarget algorithm

Input: Let εP ∈ (0, 1], a primal accuracy threshold, and εD ∈ (0, 1], a dual one, be given. Let
ρ ∈ (0, 1), an x-1 ∈ IRn. Let ψ : IR+ → IR+ be a continuous and non-decreasing function such
that ψ(0) = 0. Let p be the order of available derivatives of the functions f , cE , and cI .

PHASE 1: Computing an approximately feasible initial guess

Step F1. Minimize θ(x) using the Um algorithm starting from x-1,0 = x-1, to compute an
iterate x-1,j , j ∈ {0, 1, 2, . . . }, such that θ(x-1,j) ≤ θ(x-1,0) and such that x-1,j satisfies
at least one of the following conditions:

θ(x-1,j) ≤ 0.99 ε2P, (2.3)

θ(x-1,j) > 0.99 ε2P and ‖∇θ(x-1,j)‖ ≤ ψ(εD). (2.4)

Define x0 = x-1,j .

Step F2. If θ(x0) > 0.99 ε2P and ‖∇θ(x0)‖ ≤ ψ(εD), stop returning x0.

PHASE 2: Improving dual feasibility (target following)

Step T0. Initialize k ← 0.

Step T1. Compute tk = f(xk)−
√
ε2P − θ(xk).

Step T2. Minimize Φ(x, tk) using the Um algorithm starting from xk,0 = xk, to compute an
iterate xk,j , j ∈ {0, 1, 2, . . . }, such that Φ(xk,j , tk) ≤ Φ(xk,0, tk) = ε2P and such that xk,j
satisfies at least one of the following conditions:

f(xk,j) ≤ tk + ρ(f(xk)− tk) and θ(xk,j) ≤ 0.99 ε2P, (2.5)

f(xk,j) > tk and ‖∇Φ(xk,j , tk)‖ ≤ 2εD[f(xk,j)− tk]+, (2.6)

θ(xk,j) > 0.99 ε2P and ‖∇θ(xk,j)‖ ≤ ψ(εD). (2.7)

Define xk+1 = xk,j .

Step T3. If θ(xk+1) > 0.99 ε2P and ‖∇θ(xk+1)‖ ≤ ψ(εD), stop returning xk+1.

Step T4. If f(xk+1) > tk and ‖∇Φ(xk+1, tk)‖ ≤ 2εD[f(xk+1)− tk]+, stop returning xk+1.

Step T5. Set k ← k + 1, and go to Step T1.
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2.1.1 Terminating at Step T4

When the FTarget algorithm stops at iteration k because the stopping criterion is satisfied at
Step T4, it returns xk+1 such that √

θ(xk+1) ≤ εP,∥∥∥∥∥∥∇f(xk+1) +

m∑
j=1

λj [∇cE(xk+1)]j +

q∑
j=1

µj [∇cI(xk+1)]j

∥∥∥∥∥∥ ≤ εD,
(2.8)

where

λj =
[cE(xk+1)]j
f(xk+1)− tk

for j = 1, . . . ,m and µj =
[cI(xk+1)+]j
f(xk+1)− tk

for j = 1, . . . , q.

Note also that f(xk+1) − tk > 0 in the two expressions above and, hence, that the multipliers
λj and µj are well defined. We thus have that if [cI(xk+1)]j ≤ 0 then µj = 0 and, hence,

min [µj ,−[cI(xk+1)]j ] = µj = 0.

On the other hand, if [cI(xk+1)]j > 0 then

min [µj ,−[cI(xk+1)]j ] = −[cI(xk+1)]j ≤ εP. (2.9)

We may then conclude that complementarity (as measured with the min function) is satisfied
with precision εP. Note that the accuracies in the right-hand side of the second inequality in (2.8)
and in (2.9) do not involve the size of the Lagrange multipliers, in contrast with the termination
rule used in [11, 12].

In asymptotic terms, if we assume that the FTarget algorithm is run infinitely many times
with εP = εP,` → 0 and εD = εD,` → 0, and that it stops infinitely many times (`1, `2, . . . )
returning a point z`j that satisfies the stopping criterion at Step T4, then we have that any
accumulation point z of the sequence {z`j} is, by definition, an AKKT [1, 2, 19] point.

2.1.2 Terminating at Step F2 or Step T3

Some explanations regarding the choice and interpretation of the function ψ are now in order.
Note that ψ is used in the algorithm to stop the execution (at Steps F2 or T3) when θ(x) is
“large” (i.e. θ(x) ≥ 0.99 ε2P) and ∇θ(x) is “small” (i.e. ‖∇θ(x)‖ ≤ ψ(εD)). At a first glance,
these occurrences seem to indicate that x is an “approximate infeasible stationary point of θ(x)”.
However, a more careful analysis of particular cases reveals some subtleties.

When the FTarget algorithm stops at Step F2, it returns a point z such that

θ(z) > 0.99 ε2P and ‖∇θ(z)‖ ≤ ψ(εD). (2.10)

The analysis of these conditions is better done in asymptotic terms. Therefore, assume that the
FTarget algorithm is executed infinitely many times with εP = εP,` → 0 and εD = εD,` → 0.
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Moreover, assume that it stops infinitely many times `1, `2, . . . at Step F2 returning z`j (j =
1, 2, . . . ) such that limj→∞ z`j = z. Clearly, by (2.10), we have that

lim
j→∞

‖∇θ(z`j )‖ = 0. (2.11)

If, in addition, θ(z`j ) is bounded away from zero, by (2.11), then stopping at Step F2 means that
the infeasible point z is a stationary point of the infeasibility measure θ. If limj→∞ θ(z`j ) = 0
then the interpretation of this fact depends on the choice of function ψ and follows exactly
the same analysis that we now investigate for the case where the FTarget algorithm stops at
Step T3.

When the FTarget algorithm stops at Step T3, it returns a point z such that

0.99 ε2P < θ(z) ≤ ε2P and ‖∇θ(z)‖ ≤ ψ(εD), (2.12)

whose interpretation clearly depends on the choice of ψ. We now consider functions ψ of the
form

ψ(εD) = σ1ε
σ2
D (2.13)

with σ1 > 0 and the three possible choices: (a) σ2 = 1, (b) σ2 ∈ (1, 2), and (c) σ2 = 2.

In case (a), (2.12) implies that
‖∇θ(z)‖√

θ(z)
<

σ1√
0.99

εD
εP
. (2.14)

Note that, by the definition (2.2) of θ,

‖∇θ(z)‖√
θ(z)

= 2

∥∥∥∥∥∥
m∑
i=1

λi[∇cE(z)]i +

q∑
j=1

µj [∇cI(z)]j

∥∥∥∥∥∥ , (2.15)

where

λi =
[cE(z)]i(∑m

i=1[cE(z)]2i +
∑q

j=1[cI(z)+]2j

)1/2
for i = 1, . . . ,m (2.16)

and

µj =
[cI(z)+]j(∑m

i=1[cE(z)]2i +
∑q

j=1[cI(z)+]2j

)1/2
for j = 1, . . . , q. (2.17)

Moreover, by (2.16) and (2.17), we have that

m∑
i=1

λ2
i +

q∑
j=1

µ2
j = 1 and µj = 0 whenever [cI(z)]j < 0. (2.18)

A definition is now necessary.
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Definition 1 Given ξ > 0, we say that x has ξ-uniformly positive linear independent gradients
with respect to problem (2.1) if for all (λ, µ) ∈ IRm × IRq

+ such that
∑m

i=1 λ
2
i +

∑q
j=1 µ

2
j = 1 and

µj = 0 whenever [cI(x)]j < 0 we have that∥∥∥∥∥∥
m∑
i=1

λi[∇cE(x)]i +

q∑
j=1

µj [∇cI(x)]j

∥∥∥∥∥∥ ≥ ξ.
This means that, by (2.14), the point z returned by FTarget has not ξ-uniformly positive
linear independent gradients of active constraints with

ξ =
σ1

2
√

0.99

εD
εP
.

If σ1εD/εP is small enough, this indicates that an approximate Mangasarian-Fromovitz constraint
qualification with tolerance ξ is not satisfied at z.

The analysis of cases (b) and (c) must also be done in asymptotic terms. Therefore, assume
again that the FTarget algorithm is executed infinitely many times with εP = εP,` → 0 and
εD = εD,` → 0. Moreover, assume that it stops infinitely many times `1, `2, . . . at Step T3
returning z`j (j = 1, 2, . . . ) such that limj→∞ z`j = z. Let us assume, for the remainder of this
section, that

ω
def
= lim sup

j→∞

εD,`j
εP,`j

<∞. (2.19)

In cases (b) and (c), by (2.12), we have that

‖∇θ(z`j )‖√
θ(z`j )

<
σ1√
0.99

εσ2
D,`j

εP,`j
for j = 1, 2, . . . (2.20)

Taking limits in (2.20), and using (2.19) and the fact that σ2 > 1, we have, by (2.15–2.18),
that the gradients of active constraints at z are not positively linearly independent, so the
Mangasarian-Fromowitz constraint qualification does not hold at the feasible point z [20].

As a consequence, if the feasible set is compact and all the feasible points satisfy the Mangasarian-
Fromowitz constraint qualification then, for j large enough , stopping at T3 is impossible in view
of (2.19). Therefore, Phase 2 of the FTarget algorithm can only stop at T4 with an AKKT
point.

In order to further analyze case (c), we define the  Lojasiewicz [16] inequality.

Definition 2 A continuously differentiable function v : IRn → IR satisfies the  Lojasiewicz in-
equality at x̄ if there exist δ > 0, τ ∈ (0, 1), and κ > 0 such that, for all x ∈ B(x̄, δ),

|v(x)− v(x̄)|τ ≤ κ‖∇v(x)‖. (2.21)
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The properties of functions that satisfy the inequality (2.21) have been studied in several recent
papers in connection with minimization methods, complexity theory, asymptotic analysis of
partial differential equations, tame optimization, and the fulfillment of AKKT conditions in
augmented Lagrangian methods [2, 5]. Smooth functions satisfy this inequality under fairly
weak conditions. For example, analytic functions satisfy the  Lojasiewicz inequality.

In case (c), by (2.12), we have that

‖∇θ(z`j )‖
θ(z`j )

<
σ1

0.99

(
εD,`j
εP,`j

)2

for j = 1, 2, . . .

We therefore obtain that, for arbitrary τ ∈ (0, 1),

θ(z`j )
τ = θ(z`j )

τ−1θ(z`j ) > θ(z`j )
τ−1

[
σ1

0.99

(
εD,`j
εP,`j

)2
]−1

‖∇θ(z`j )‖.

Since, by (2.12), θ(z`j ) ≤ ε2
P,`j

, then θ(z`j ) → 0 when j tends to infinity. As a consequence,

θ(z`j )
τ−1 tends to infinity because τ ∈ (0, 1), and thus, using (2.19), for every δ > 0 and κ > 0,

there exists j sufficiently large such that

z`j ∈ B(z, δ) and θ(z`j )
τ > κ ‖∇θ(z`j )‖.

This implies that the function θ(·) does not satisfy the  Lojasiewicz inequality at any possible
limit point z. Therefore, if we assume that the function θ(·) satisfies the  Lojasiewicz inequality at
every feasible point and that j is large enough, then, in view of (2.19), Phase 2 of the FTarget
algorithm can only stop at Step T4 returning an AKKT point.

3 Finite Termination, Convergence and Complexity

In this section we will prove that the FTarget algorithm is well defined and terminates in
a finite number of iterations, provided that the Um algorithm employed to minimize θ(x) at
Phase 1 and Φ(x, tk) at Phase 2 possesses standard convergence properties. Moreover, if the
Um algorithm also enjoys suitable evaluation complexity properties, we can establish complexity
bounds for the FTarget algorithm itself.

Assumption A1 The function f is bounded below on the set L(ε2P) in that there exists a con-
stant flow such that f(x) ≥ flow for all x ∈ L(ε2P).

Assumption A2 ‖∇f‖ is bounded above on L(ε2P) in that there exists a constant κ∇ such that
‖∇f(x)‖ ≤ κ∇ for all x ∈ L(ε2P).

In order to simplify notation below, we also assume, without loss of generality, that

κ∇ ≥ max

[
1,

5σ1

2ρ

]
. (3.22)
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Assumption A1 is enough to prove a first result that is essential for further analysis of con-
vergence and complexity. Lemma 3.1 shows that, independently of the Um algorithm used
for unconstrained minimizations, the number of outer iterations computed by the FTarget
algorithm cannot exceed a bound that only depends on εP and the lower bound of f .

Lemma 3.1 Suppose that Assumption A1 holds. Then the FTarget algorithm stops at
Phase 1 or it performs, at most, ⌊

f(x0)− flow

0.1(1− ρ)εP

⌋
+ 1

outer iterations at Phase 2.

Proof. Assume that the FTarget algorithm does not stop at Phase 1. By the definition
of this algorithm, an outer iteration is launched only when θ(xk) ≤ 0.99 ε2P and is followed
by other outer iteration only when

f(xk+1) ≤ tk + ρ(f(xk)− tk) and θ(xk+1) ≤ 0.99 ε2P.

By the definition of tk this implies that

f(xk+1) ≤ tk + ρ
√
ε2P − θ(xk)

= f(xk)−
√
ε2P − θ(xk) + ρ

√
ε2P − θ(xk)

= f(xk)− (1− ρ)
√
ε2P − θ(xk).

Thus, since θ(xk) ≤ 0.99 ε2P,

f(xk+1) ≤ f(xk)− (1− ρ)
√
ε2P − 0.99 ε2P = f(xk)− 0.1(1− ρ)εP.

In other words, when an outer iteration is completed satisfying (2.5) we obtain a decrease of
at least 0.1(1− ρ)εP in the objective function. Then, since f(x) ≥ flow for all x ∈ L(ε2P) by
Assumption A1, the number of outer iterations that are completed satisfying (2.5) must be
smaller than or equal to ⌊

f(x0)− flow

0.1(1− ρ)εP

⌋
.

We therefore obtain the desired result by adding a final iteration at which (2.5) may not
hold. 2

Observe that, according to this lemma, the number of outer iterations performed by the FTarget
algorithm could be only one, a case that occurs if εP is sufficiently large and, consequently, the
first target t0 is very low.

Now we need to prove that, once an outer iteration is launched, it can be completed in a finite
number of inner iterations. The following lemma establishes that, if θ(xk) ≤ 0.99 ε2P and the Um
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algorithm does not stop at xk,j , the gradient norm ‖∇Φ(xk,j , tk)‖ is bounded away from zero by
a quantity that only depends on εP, εD, and a bound on the norm of the gradient of f on L(ε2P).

Lemma 3.2 Suppose that Assumption A2 holds, that θ(xk) ≤ 0.99 ε2P, and that the Um
algorithm used for minimizing Φ(x, tk) does not stop at the inner iterate xk,j . Then,

‖∇Φ(xk,j , tk)‖ ≥ min

[
0.2ρ εD εP,

ψ(εD)

2
,
ψ(εD)εD

2κ∇

]
. (3.23)

Proof. Since the Um algorithm does not stop at xk,j we have that none of the conditions
(2.5), (2.6), and (2.7) hold at xk,j . We will consider two cases:

f(xk,j) > tk + ρ(f(xk)− tk) (3.24)

and
f(xk,j) ≤ tk + ρ(f(xk)− tk). (3.25)

Consider the case (3.24) first. Then, f(xk,j) > tk. Since (2.6) does not hold, we have that

‖∇Φ(xk,j , tk)‖ > 2 εD (f(xk,j)− tk). (3.26)

Now, by (3.24) and the definition of tk, since θ(xk) ≤ 0.99 ε2P,

f(xk,j)− tk > ρ(f(xk)− tk) = ρ
√
ε2P − θ(xk) ≥ 0.1ρ εP.

Therefore, by (3.26),
‖∇Φ(xk,j , tk)‖ > 0.2ρ εD εP. (3.27)

Now consider the case in which (3.25) holds. Then, θ(xk,j) > 0.99 ε2P, otherwise (2.5) would
have been satisfied. Thus, since (2.7) does not hold, we also have that

ψ(εD) < ‖∇θ(xk,j)‖

= ‖∇θ(xk,j) + 2(f(xk,j)− tk)+∇f(xk,j)− 2(f(xk,j)− tk)+∇f(xk,j)‖

≤ ‖∇θ(xk,j) + 2(f(xk,j)− tk)+∇f(xk,j)‖+ 2‖∇f(xk,j)‖(f(xk,j)− tk)+

≤ ‖∇Φ(xk,j , tk)‖+ 2κ∇(f(xk,j)− tk)+,

where we have used Assumption A2 to derive the last inequality, yielding that

‖∇Φ(xk,j , tk)‖ > ψ(εD)− 2κ∇(f(xk,j)− tk)+. (3.28)

We now consider two cases. In the first one,

2κ∇(f(xk,j)− tk)+ ≤
ψ(εD)

2
. (3.29)
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Then, by (3.28),

‖∇Φ(xk,j , tk)‖ ≥
ψ(εD)

2
.

In the second case, i.e. if (3.29) is not true, we have that

2(f(xk,j)− tk)+ = 2(f(xk,j)− tk) ≥
ψ(εD)

2κ∇
.

Then, since (2.6) does not hold,

‖∇Φ(xk,j , tk)‖ ≥ 2εD(f(xk,j)− tk)+ ≥
ψ(εD)εD

2κ∇
.

This completes the proof. 2

The following assumption expresses that the Um algorithm enjoys sensible first-order conver-
gence properties in that the sequence of iterates {xj} it generates when applied to the minimiza-
tion of a bounded-below smooth function contains a subsequence at which the gradient of this
function converges to zero. We formulate this assumption in a way suitable for its application
to the convergence of the FTarget algorithm.

Assumption A3 For an arbitrary ε > 0, one has that, if the Um algorithm is applied to the
minimization of θ(x) or Φ(x, t) with respect to x, starting from an arbitrary initial point x0, then,
in a finite number of iterations, this algorithm finds an iterate x such that either θ(x) ≤ θ(x0)
and ‖∇θ(x)‖ ≤ ε, or Φ(x, t) ≤ Φ(x0, t) and ‖∇Φ(x, t)‖ ≤ ε, respectively.

The following lemma establishes that, under Assumptions A2–A3 and given the iterate xk of
the FTarget algorithm, the iterate xk+1 is well defined and it is computed in a finite number
of iterations.

Lemma 3.3 Suppose that Assumptions A2–A3 hold. Then, for all k = 0, 1, 2, . . . , the Um
algorithm applied to the minimization of Φ(x, tk) finds a point xk,j that satisfies at least
one of the criteria (2.5), (2.6), and (2.7) in a finite number of iterations.

Proof. Define

ε = min

[
0.2ρ εD εP,

ψ(εD)

2
,
ψ(εD) εD

2κ∇

]
> 0.

By Assumption A3, the Um algorithm eventually finds an iteration j0 such that xk,j0 satisfies
‖∇Φ(xk,j0 , tk)‖ ≤ ε. By Lemma 3.2 and the definition of ε, xk,j0 satisfies (2.5), (2.6), or (2.7)
and the iteration k of the FTarget algorithm terminates at some xk,j with j ≤ j0. 2
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Now we are ready to prove finite termination of the FTarget algorithm.

Theorem 3.4 Suppose that Assumptions A1–A3 hold. Then, the FTarget algorithm
stops at Step F2 of Phase 1 or after at most⌊

f(x0)− flow

0.1(1− ρ)εP

⌋
+ 1 (3.30)

iterations of Phase 2 with xk+1 satisfying T3 or T4.

Proof. By Assumption A3, the problem at Phase 1 is solved by the Um algorithm
in a finite number of iterations. By Lemma 3.1 the FTarget algorithm cannot perform
more than (3.30) outer iterations. By Lemma 3.3 each outer iteration is well-defined and
terminates in finite time. Therefore, the FTarget algorithm stops at Step F2 of Phase 1
or, at the last outer iteration of Phase 2, xk+1 satisfies T3 or T4. 2

The following assumption prescribes an additional property of the Um algorithm. Whereas
Assumption A3 says that, for any ε > 0, the Um algorithm finds a point that verifies ‖∇θ(x)‖ ≤ ε
or ‖∇Φ(x, t)‖ ≤ ε in a finite number of iterations, Assumption A4 aims to quantify the number
of function evaluations that are necessary to achieve a sufficiently small gradient.

Assumption A4 There exists α ≥ 0 and a constant κθ > 0 (depending on properties of the
functions cE and cI and on parameters of the Um algorithm) such that, given ε > 0, if the Um
algorithm is applied to the minimization of θ(x) starting from an arbitrary initial point x-1, the
algorithm finds an iterate x such that θ(x) ≤ θ(x-1) and ‖∇θ(x)‖ ≤ ε employing, at most,

κθ

[
θ(x-1)

εα

]
evaluations of cE , cI , and their derivatives. Moreover, if, for any t ∈ IR, the Um algorithm
is applied to the minimization of Φ(x, t) (with respect to x) starting from an arbitrary initial
point x0, there exists a constant κΦ > 0 (depending on properties of the functions f , cE , and
cI and on parameters of the Um algorithm) such that the algorithm finds an iterate x such that
Φ(x, t) ≤ Φ(x0, t) and ‖∇Φ(x, t)‖ ≤ ε employing, at most,

κΦ

[
Φ(x0, t)

εα

]
evaluations of f , cE , cI , and their derivatives.

The constants κθ and κΦ mentioned in Assumption A4 depend on algorithmic parameters of
the Um algorithm and on quantities associated with the objective function (θ or Φ) of the
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unconstrained minimization problem being solved. For example, if the Um algorithm is a typical
first-order linesearch method and LΦ is a Lipschitz constant for ∇Φ(x, t) (for all t), we have
that α = 2 and

κΦ = LΦ κUM,

where κUM depends on algorithmic parameters, such as sufficient descent tolerances and angle
conditions’ constants (see [13] for instance). Note that the assumption that the same LΦ may
be a Lipschitz constant independently of t is plausible, if one assumes Lipschitz continuity of
∇f , ∇cE , and ∇cI . Similar conclusions hold if one consider the first-order adaptive cubic
regularization method ARC [7] instead of a first-order linesearch method.

The situation is however slightly more complex if one wishes to exploit derivatives of order
larger than one for obtaining better worst-case complexity bounds, as we now describe. We base
our argument on a recent paper by Birgin et al. [4] where unconstrained optimization using
high-order models is considered. It results from this last paper that if one wishes to minimize
u(x) = v(x) + w(x) over IRn (where v(x) is at least continuously differentiable and w(x) is p
times continuously differentiable with a Lipschitz continuous p-th derivative), and if one is ready
to supply derivatives of w up to order p, then a variant of the ARC method starting from x̄
and using high-order models can be shown to produce an approximate first-order critical point
(‖∇u(x)‖ ≤ ε) in a number of evaluations of w(x) and its derivatives at most equal to

κA

[
u(x̄)− ulow

ε(p+1)/p

]
,

where ulow is a global lower bound on u(x) and κA depends on the Lipschitz constant of the p-th
derivative of w, on p, and on algorithmic parameters only. Notice that the number of evaluations
of v(x) might be higher (because it is explicitly included in the model and has to be evaluated,
possibly with its first derivative, every time the model (and its derivative) is computed). In
order to apply this technique, we now reformulate our initial problem (2.1) in the equivalent
form

min
x,y,z∈IRn+q+1

z

s.t. cE(x, y, z) = 0,
y ≤ 0,

with cE(x, y, z)
def
=

 f(x)− z
cE(x)

cI(x)− y

 (3.31)

and construct the associated Φ(x, y, z, t) function as

Φ(x, y, z, t) = ‖cE(x, y, z)‖2︸ ︷︷ ︸
w(x,y,z)

+ ‖y+‖2 + [z − t]2+︸ ︷︷ ︸
v(y,z)

.

Note that v(y, z) is continuously differentiable and that the differentiability properties of f , cE ,
and cI are transferred to cE(x, y, z): the Lipschitz continuity of the p-th derivative of Φ(x, y, z, t)
with respect to its first three variables being ensured if all derivatives of f , cE , and cI are
bounded up to order p − 1 and Lipschitz continuous up to order p. Note also that the (very
simple) evaluation of v(y, z) does not involve any of the problem’s functions or derivatives,
and thus that the number of these evaluations does not affect the evaluation complexity of
the FTarget algorithm. In these conditions, we may then conclude that the high-order ARC
algorithm presented in [4] satisfies Assumption A4 with κθ and κΦ equal to κA and α = (p+1)/p.
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The following result is a reformulation of Lemma 3.3 in which the number of evaluations em-
ployed by the Um algorithm for minimizing Φ(x, tk) is quantified.

Lemma 3.5 Suppose that Assumptions A1–A2 and A4 hold. Then, for all k ≥ 0, the Um
algorithm applied to the minimization of Φ(x, tk) finds, using no more than⌊

κΦ

(
2κ∇
σ1

)α
ε2P ε
−α
D min[εσ2D , εP]−α

⌋
(3.32)

evaluations of f , cE , cI , and their derivatives, a point xk,j that satisfies at least one of the
criteria (2.5), (2.6), and (2.7).

Proof. Observing that Φ(xk,0, tk) = Φ(xk, tk) = ε2P and using Lemma 3.2 and Assump-
tion A4, we deduce that the Um algorithm needs no more than

κΦ

 ε2P

min

[
0.2ρ εD εP,

ψ(εD)
2 ,

ψ(εD) εD
2κ∇

]α


evaluations to find an approximate minimizer. We obtain the desired bound using the
definition of ψ, (3.22), and the inequalities σ2 ≥ 1, εP ≤ 1, and εD ≤ 1 . 2

Notice that, as in Assumption A4, the constant κΦ in (3.32) depends only on f , cE , cI , and the
parameters of the Um algorithm.

It is now possible to prove a complexity result for the FTarget algorithm.
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Theorem 3.6 Suppose that Assumptions A1–A2 and A4 hold and that f(x) ≤ fup for
all x ∈ L(ε2P). Then the FTarget algorithm stops at Step F2 of Phase 1 or there exists
k ∈ {0, 1, 2, . . . } such that FTarget stops at iteration k of Phase 2 with xk+1 satisfying
T3 or T4. Moreover, the FTarget algorithm employs, in Phase 1, at most,⌊

κθ

[
θ(x-1)

σα1

]
ε−σ2αD

⌋
(3.33)

evaluations of cE , cI , and their derivatives, and, in Phase 2, at most,⌊[
κΦ

(
2κ∇
σ1

)α(fup − flow

0.1(1− ρ)
+ 1

)]
εPε
−α
D min[εσ2D , εP]−α

⌋
(3.34)

evaluations of f , cE , cI , and their derivatives.

Proof. The first part of the theorem follows from the definition of ψ and Theorem 3.4
since Assumption A4 implies Assumption A3. The bound on the total number of evaluations
of Phase 1 follows directly from Assumption A4; while the bound

κΦ

[(
2κ∇
σ1

)α
ε2Pε
−α
D min[εσ2D , εP]−α

][⌊
f(x0)− flow

0.1(1− ρ) εP

⌋
+ 1

]
on the total number of evaluations of Phase 2 follows from Lemmas 3.1 and 3.5. The
bound (3.34) then follows from the assumption that f(x) ≤ fup for all x ∈ L(ε2P) and the
fact that εP ≤ 1. 2

Notice that, as in Assumption A4, the constant κθ in (3.33) depends only on cE , cI , and param-
eters of the Um algorithm, whereas the constant κΦ in (3.34) depends only on f , cE , cI , and
parameters of the Um algorithm. Note also that, by introducing the upper bound fup on f(x) in
the neighbourhood L(ε2P) of the feasible set, we have made the complexity bound independent
of x0 (which is not a data of the problem nor an input parameter, but the result of applying
the Um algorithm to the minimization of θ(x) starting from x-1 at Phase 1 of the FTarget
algorithm).

4 Discussion

Some comments are now useful to make the result of Theorem 3.6 more explicit. Table 4.1 on
the next page summarizes our convergence and complexity results for the case where

ε = εD = εP (4.1)

is small enough and for different choices of the Um algorithm and values of σ2 in the defini-
tion (2.13) of ψ. Note that, from the definition in (2.19), ω = 1 in this case, making our discussion
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of Section 2.1 relevant. Despite its appealing symmetry, the choice (4.1) is somewhat arbitrary,
and variations in the complexities displayed in the table will result from different choices. (The

alternative εD = ε
2/3
P is suggested in [11], leading to a bound in O(ε

−3/2
P ) for the case where

p = 2, σ2 = 1, and α = 3/2, but implying that ω = ∞.) In particular, (4.1) implicitly assumes
that the problem’s scaling is reasonable. Note that the complexity of Phase 1 mentioned in the
table is only informative since the overall complexity of the FTarget algorithm is given by the
complexity of Phase 2 which dominates that of Phase 1 in all cases.

ψ(ε) = σ1ε
σ2

σ2 = 1 σ2 ∈ (1, 2) σ2 = 2

Approximate infeasible stationary point for ε→ 0 (Phase 1), or
approximate KKT point (Phase 2), or . . .

C
on

ve
rg

en
ce

re
su

lt
s no ξ-uniform positive

linear independence
of gradients of active

constraints with

ξ = σ1/(2
√

0.99)

MFCQ fails
for ε→ 0

 Lojasiewicz fails
for ε→ 0

A
ss

u
m

p
ti

o
n

A
4

h
o
ld

s
fo

r
U
m

w
it

h

α
=

2
(p

=
1) Phase 1: O

(
ε−2
)

Phase 2: O
(
ε−3
) Phase 1: O

(
ε−2σ2

)
Phase 2: O

(
ε−1−2σ2

) Phase 1: O
(
ε−4
)

Phase 2: O
(
ε−5
)

α
=

3/
2

(p
=

2) Phase 1: O
(
ε−1.5

)
Phase 2: O

(
ε−2
) Phase 1: O

(
ε−1.5σ2

)
Phase 2: O

(
ε−0.5−1.5σ2

) Phase 1: O
(
ε−3
)

Phase 2: O
(
ε−3.5

)

α
=

(p
+

1)
/p

(p
≥

1)

Phase 1: O
(
ε
− p+1

p

)
Phase 2: O

(
ε
1−2

(p+1)
p

) Phase 1: O
(
ε
−σ2 p+1

p

)
Phase 2: O

(
ε
1−(1+σ2)

(p+1)
p

) Phase 1: O

(
ε
−2

(p+1)
p

)
Phase 2: O

(
ε
1−3

(p+1)
p

)

Table 4.1: Summary of convergence and complexity results for different choices of the Um
algorithm and function ψ(ε) = σ1ε

σ2 with σ1 > 0 and different choices for σ2 ∈ [1, 2].
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With σ2 = 2, we obtain the maximal quality of the algorithmic results in the sense that the
FTarget algorithm stops when an approximate KKT point (without scaling) is found or when
a very weak property ( Lojasiewicz inequality) does not hold in the limit. With σ2 = 1, the
FTarget algorithm stops when an approximate KKT point is found or when, in the limit,
a relaxed Mangasarian-Fromowitz property with tolerance ξ = σ1/(2

√
0.99) does not hold.

Between those extremes, when 1 < σ2 < 2, either the final point is an approximate KKT point
or the full Mangasarian-Fromowitz property fails in the limit. As expected, the complexity goes
in the opposite direction. The best complexity is obtained when σ2 = 1 and the worst one when
σ2 = 2. Also as expected, when the Um algorithm satisfies Assumption A4 with α = (p+ 1)/p
(p > 2), complexities are better than those with α = 2 (p = 1) and α = 3/2 (p = 2). The best
complexity is obtained when α approaches 1 because p grows and σ2 = 1.

We now compare the results obtained with those obtained in [8, 11, 12] for p = 1 and p = 2,
focussing as above on the case where ε = εP = εD. In these contributions, the complexity of
achieving scaled KKT conditions is considered, at variance with the unscaled approach used in
the present paper. By scaled KKT conditions, we mean that (2.8) is modified to take (for a
general approximate first-order critical triple (x, λ, µ)), the form√

θ(x) ≤ ε,∥∥∥∥∥∥∇f(x) +
m∑
j=1

λj [∇cE(x)]j +

q∑
j=1

µj [∇cI(x)]j

∥∥∥∥∥∥ ≤ ε ‖(1, λ, µ)‖,

q∑
j=1

µj [cI(x)]j ≤ 2ε ‖(1, λ, µ)‖,

(4.2)

where µj ≤ 0 for j = 1, . . . , q.

It is shown in [8, 12] that, if f , cE , and cI are continuously differentiable with Lipschitz continuous
gradients, then a triple (x, λ, µ) can be found satisfying (4.2) or (2.4)/(2.7) in at most⌊

κ1

√
θ(x-1) + fup − flow

ε2
+ κ2| log ε|+ κ3

⌋
evaluations of f , cE , and cI (and their first derivatives), where κ1, κ2, and κ3 are constants
independent of ε. This result is one order better than the bound of O

(
ε−3
)

evaluations reported
in Table 4.1 for the case α = 2 and σ2 = 1, indicating that achieving scaled KKT conditions
seems easier than achieving unscaled KKT conditions when using first derivatives only. We have
focussed on the case where σ2 = 1 because the implications in terms of degeneracies for ε → 0
are not discussed in [8, 12], meaning that it is not clear whether the algorithms being compared
declare failure in satisfying scaled or unscaled KKT conditions in the same situations.

The comparison is more difficult if we now allow the use of first and second derivatives, because
the results in [11] are expressed using a different first-order criticality measure χ(x) whose value
is the maximal decrease that is achievable on the linearized function under consideration in
the intersection of the unit sphere and the feasible domain defined by positivity constraints
on slack variables for inequalities (see [11] for details). This criticality measure is also used in
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scaled form, in that it has to be below ε ‖(1, λ, µ)‖ when applied on the Lagrangian (in the
spirit of (4.2)), or below ε when applied to

√
θ(·). This last condition is conceptually similar

to (2.4)/(2.7), but is significantly stronger because it involves the gradient of
√
θ(·) rather than

that of θ(·); indeed strong assumptions on the singular values of the constraints’ Jacobians are
needed to ensure their equivalence in order. In this context, it is shown that, if f , cE , and cI
are twice continuously differentiable with Lipschitz continuous gradients and Hessians, and if
a possibly restrictive assumption on the subproblem solution holds (see [11] for details), then
a triple (x, λ, µ) satisfying these alternative scaled criticality conditions can be obtained in at
most ⌊

κ1

√
θ(x-1) + fup − flow

ε2
+ κ2

⌋
evaluations of f , cE , and cI (and their first and second derivatives), where κ1 and κ2 are again
constants independent of ε. In contrast with the case where p = 1, this bound is now (in order)
identical to the corresponding result in Table 4.1 (α = 3/2, σ2 = 1). Whether it could be
improved to ensure that either (4.2) or (2.4)/(2.7) holds is an interesting open question.

5 Conclusions

We have presented worst-case evaluation complexity bounds for computing approximate first-
order critical points of smooth constrained optimization problems. At variance with previous
bounds, these involve the unscaled Karush-Kuhn-Tucker optimality conditions, and cover cases
where high-order derivatives are used. As was the case in [8, 11, 12], the complexity bounds are
obtained by applying a two-phase algorithm which first enforces approximate feasibility before
improving optimality without deteriorating feasibility.

At this stage, the applicable nature of the two-phase algorithm is uncertain. While the specific
version presented in this paper is very unlikely to be practical because it closely follows poten-
tially nonlinear constraints, thereby enforcing possibly very short steps, the question of whether
more efficient variants of the idea can be made to work in practice remains to be explored.
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