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Abstract

The worst-case evaluation complexity for smooth (possibly nonconvex) unconstrained
optimization is considered. It is shown that, if one is willing to use derivatives of the
objective function up to order p (for p ≥ 1) and to assume Lipschitz continuity of the p-th
derivative, then an ε-approximate first-order critical point can be computed in at most
O(ε−(p+1)/p) evaluations of the problem’s objective function and its derivatives. This
generalizes and subsumes results known for p = 1 and p = 2.

1 Introduction

Recent years have seen a surge of interest in the analysis of worst-case evaluation complexity
of optimization algorithms for nonconvex problems (see, for instance, Vavasis [17], Nesterov
and Polyak [16], Nesterov [14, 15], Gratton, Sartenaer and Toint [13], Cartis, Gould and Toint
[3, 4, 5, 8], Bian, Chen and Ye [2], Bellavia, Cartis, Gould, Morini and Toint [1], Grapiglia,
Yuan and Yuan [12], Vicente [18]). In particular the paper [16] was the first to show that
a method using second derivatives can find an ε-approximate first-order critical point for an
unconstrained problem with Lipschitz continuous Hessians in at most O(ε−3/2) evaluations of
the objective function (and its derivatives), in contrast with methods using first-derivatives
only, whose evaluation complexity was known [14] to be O(ε−2) for problems with Lipschitz
continuous gradients. The purpose of the present short paper is to show that, if one is willing
to use derivatives up to order p (for p ≥ 1) and to assume Lipschitz continuity of the p-
th derivative, then an ε-approximate first-order critical point can be computed in at most
O(ε−(p+1)/p) evaluations of the objective function and its derivatives. This is achieved by the
use of a regularization method very much in the spirit of the first- and second-order ARC
methods described in [4, 5].

∗This work has been partially supported by the Brazilian agencies FAPESP (grants 2010/10133-
0, 2013/03447-6, 2013/05475-7, 2013/07375-0, and 2013/23494-9) and CNPq (grants 304032/2010-7,
309517/2014-1, 303750/2014-6, and 490326/2013-7) and by the Belgian Fund for Scientific Research (FNRS).
†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua
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2 A regularized p-th order model and algorithm

For p ≥ 1, p integer, consider the problem

min
x∈IRn

f(x), (2.1)

where we assume that f from IRn to IR is bounded below and p-times continuously differen-
tiable. We also assume that its p-th derivative at x, the p-th order tensor

∇pxf(x) =

[
∂pf

∂xi1 . . . ∂xip

]
ij∈{1,...,n},j=1,...,p

(x),

is Lipschitz continuous, i.e. that there exists a constant L ≥ 0 such that, for all x, y ∈ IRn,

‖∇pxf(x)−∇pxf(y)‖[p] ≤ (p− 1)!L‖x− y‖. (2.2)

In (2.2), ‖ · ‖[p] is the tensor norm recursively induced by the Euclidean norm ‖ · ‖ on the
space of p-th order tensors, which is given by

‖T‖[p]
def
= max
‖v1‖=···=‖vp‖=1

|T [v1, . . . , vp]|, (2.3)

where T [v1, . . . , vj ] stands for the tensor of order q − j ≥ 0 resulting from the application
of the q-th order tensor T to the vectors v1, . . . , vj . Let Tp(x, s) be the Taylor series of the
function f(x+ s) at x truncated at order p

Tp(x, s)
def
= f(x) +

p∑
j=1

1

j!
∇jxf(x)[s]j , (2.4)

where the notation T [s]j stands for the tensor T applied j times to the vector s. Then Taylor’s
theorem, the identity ∫ 1

0
(1− ξ)p−1 dξ =

1

p
, (2.5)

the induced nature of ‖ · ‖[p] and (2.2) imply that, for all x, s ∈ IRn,

f(x+ s) = Tp−1(x, s) + 1
(p− 1)!

∫ 1

0
(1− ξ)p−1∇pxf(x+ ξs)[s]p dξ

≤ Tp(x, s) + 1
(p− 1)!

∣∣∣∣∫ 1

0
(1− ξ)p−1(∇pxf(x+ ξs)[s]p −∇pxf(x)[s]p) dξ

∣∣∣∣
≤ Tp(x, s) + 1

(p− 1)!

∫ 1

0
(1− ξ)p−1|∇pxf(x+ ξs)[s]p −∇pxf(x)[s]p dξ

≤ Tp(x, s) +

[∫ 1

0

(1− ξ)p−1

(p− 1)!
dξ

]
max
ξ∈[0,1]

|∇pxf(x+ ξs)[s]p −∇pxf(x)[s]p|

≤ Tp(x, s) + 1
p!
‖s‖p max

ξ∈[0,1]
‖∇pxf(x+ ξs)−∇pxf(x)‖[p]

≤ Tp(x, s) + L
p ‖s‖

p+1.

(2.6)
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Following the more general argument developed by Cartis, Gould and Toint [10], consider
now, for an arbitrary unit vector v, φ(α) = ∇1

xf(x+ αs)[v] and τp−1(α) =
∑p−1

i=0 φ
(i)(0)αi/i!.

Taylor’s identity then gives that

φ(1)− τp−1(1) =
1

(p− 2)!

∫ 1

0
(1− ξ)p−2[φ(p−1)(ξ)− φ(p−1)(0)] dξ.

Hence, since τp−1(1) = ∇1
sTp(x, s)[v],

(∇1
xf(x+ s)−∇1

sTp(x, s))[v] =
1

(p− 2)!

∫ 1

0
(1− ξ)p−2[∇pxf(x+ ξs)−∇pxf(x)][s]p−1[v] dξ.

Thus, using the symmetry of the derivative tensors, picking v to maximize the absolute value
of the left-hand side and using (2.5), (2.3) and (2.2) successively, we obtain that

‖∇1
xf(x+ s)−∇1

sTp(x, s)‖

= 1
(p− 2)!

∣∣∣∣∣
∫ 1

0
(1− ξ)p−2(∇pxf(x+ ξs)−∇pxf(x))[v]

[
s

‖s‖

]p−1
‖s‖p−1dξ

∣∣∣∣∣
≤ 1

(p− 2)!

[∫ 1

0
(1− ξ)p−2dξ

]
max
ξ∈[0,1]

∣∣∣∣∣(∇pxf(x+ ξs)−∇pxf(x))[v]

[
s

‖s‖

]p−1∣∣∣∣∣ ‖s‖p−1
≤ 1

(p− 1)!
max
ξ∈[0,1]

max
‖w1‖=···=‖wp‖=1

|(∇pxf(x+ ξs)−∇pxf(x))[w1, . . . , wp]| ‖s‖p−1

= 1
(p− 1)!

max
ξ∈[0,1]

‖∇pxf(x+ ξs)−∇pxf(x)‖[p]‖s‖p−1

≤ L‖s‖p.

(2.7)

In order to describe our algorithm, we also define the regularized Taylor series

m(x, s, σ) = Tp(x, s) +
σ

p+ 1
‖s‖p+1, (2.8)

whose gradient is

∇1
sm(x, s, σ) = ∇1

sTp(x, s) + σ‖s‖p s

‖s‖
. (2.9)

Note that
m(x, 0, σ) = Tp(x, 0) = f(x). (2.10)

The minimization algorithm we consider is now detailed as Algorithm 1 on the following
page.

Each iteration of this algorithm requires the approximate minimization of m(xk, s, σk), but
we may note that conditions (2.12) and (2.13) are relatively weak, in that they only require
a decrease of the regularized p-th order model and an approximate first-order stationary
point: no global optimization of this possibly nonconvex model is needed. Fortunately, this
approximate minimization does not involve additional computations of f or of its derivatives
at other points than at xk, and therefore the exact method used and the resulting effort spent
in Step 2 have no impact on the evaluation complexity. Also note that the numerator and



Birgin, Gardenghi, Mart́ınez, Santos, Toint — Complexity with high-order models 4

Algorithm 1: ARp

Step 0: Initialization. An initial point x0 and an initial regularization parameter σ0 >
0 are given, as well as an accuracy level ε. The constants θ, η1, η2, γ1, γ2, γ3 and
σmin are also given and satisfy

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (2.11)

Compute f(x0) and set k = 0.

Step 1: Test for termination. Evaluate ∇1
xf(xk). If ‖∇1

xf(xk)‖ ≤ ε , terminate
with the approximate solution xε = xk. Otherwise compute derivatives of f from
order 2 to p at xk.

Step 2: Step calculation. Compute the step sk by approximately minimizing the
model m(xk, s, σk) with respect to s in the sense that the conditions

m(xk, sk, σk) < m(xk, 0, σk) (2.12)

and
‖∇1

sm(xk, sk, σk)‖ ≤ θ‖sk‖p (2.13)

hold.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tp(xk, 0)− Tp(xk, sk)
. (2.14)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.15)

Increment k by one and go to Step 1 if ρk ≥ η1 or to Step 2 otherwise.
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denominator in (2.14) are strictly comparable, the latter being Taylor’s approximation of the
former, without the regularization parameter playing any role.

Iterations for which ρk ≥ η1 (and hence xk+1 = xk + sk) are called “successful” and we

denote by Sk
def
= {0 ≤ j ≤ k | ρj ≥ η1} the index set of all successful iterations between 0 and

k. We also denote by Uk its complement in {0, . . . , k}, which corresponds to the index set
of “unsuccessful” iterations between 0 and k. Note that, before termination, each successful
iteration requires the evaluation of f and its first p derivatives, while only the evaluation of
f is needed at unsuccessful ones.

We first derive a very simple result on the model decrease obtained under condition (2.12).

Lemma 2.1 The mechanism of Algorithm 1 then guarantees that, for all k ≥ 0,

Tp(xk, 0)− Tp(xk, sk) ≥
σk
p+ 1

‖sk‖p+1. (2.16)

Proof. Observe that, because of (2.12) and (2.8),

0 ≤ m(xk, 0, σk)−m(xk, sk, σk) = Tp(xk, 0)− Tp(xk, sk)−
σk
p+ 1

‖sk‖p+1

which implies the desired bound. 2

As a result, we obtain that (2.14) is well-defined for all k ≥ 0. We next deduce a simple
upper bound on the regularization parameter σk.

Lemma 2.2 Suppose that f is p times continuously differentiable with Lipschitz con-
tinuous p-th derivative (i.e., that (2.2) holds). Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[
σ0,

γ3L(p+ 1)

p (1− η2)

]
. (2.17)

Proof. Assume that

σk ≥
L(p+ 1)

p (1− η2)
. (2.18)

Using (2.6) and (2.16), we may then deduce that

|ρk − 1| ≤ |f(xk + sk)− Tp(xk, sk)|
|Tp(xk, 0)− Tp(xk, sk)|

≤ L(p+ 1)

p σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk.
As a consequence, the mechanism of the algorithm ensures that (2.17) holds. 2

Our next step, very much in the line of the theory proposed in [5], is to show that the
steplength cannot be arbitrarily small compared with the gradient of the objective function
at the trial point xk + sk.
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Lemma 2.3 Suppose that f is p times continuously differentiable with Lipschitz con-
tinuous p-th derivative (i.e., that (2.2) holds). Then, for all k ≥ 0,

‖sk‖ ≥
(
‖∇1

xf(xk + sk)‖
L+ θ + σk

) 1
p

. (2.19)

Proof. Using the triangle inequality, (2.7), (2.9) and (2.13), we obtain that

‖∇1
xf(xk + sk)‖ ≤ ‖∇1

xf(xk + sk)−∇1
sTp(xk, sk)‖+

∥∥∥∥∇1
sTp(xk, sk) + σk‖sk‖p sk

‖sk‖

∥∥∥∥
+σk‖sk‖p

≤ L‖sk‖p + ‖∇1
sm(xk, sk, σk)‖+ σk‖sk‖p

≤ [L+ θ + σk] ‖sk‖p

and (2.19) follows. 2

We now bound the number of unsuccessful iterations as a function of the number of
successful ones.

Lemma 2.4 [5, Theorem 2.1] The mechanism of Algorithm 1 guarantees that, if

σk ≤ σmax, (2.20)

for some σmax > 0, then

k + 1 ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (2.21)

Proof. The regularization parameter update (2.15) gives that, for each k,

γ1σj ≤ max[γ1σj , σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk.

Thus we deduce inductively that

σ0γ
|Sk|
1 γ

|Uk|
2 ≤ σk.

We therefore obtain, using (2.20), that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(
σmax

σ0

)
,

which then implies that

|Uk| ≤ −|Sk|
log γ1
log γ2

+
1

log γ2
log

(
σmax

σ0

)
,
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since γ2 > 1. The desired result (2.21) then follows from the equality k + 1 = |Sk|+ |Uk|
and the inequality γ1 < 1 given by (2.11). 2

Using all the above results, we are now in position to state our main evaluation complexity
result.

Theorem 2.5 Suppose that f is p times continuously differentiable with Lipschitz con-
tinuous p-th derivative (i.e., that (2.2) holds), and let flow be a lower bound on f . Then,
given ε > 0, Algorithm 1 needs at most⌊

κs
f(x0)− flow

ε
p+1
p

⌋

successful iterations (each involving one evaluation of f and its p first derivatives) and
at most ⌊

κs
f(x0)− flow

ε
p+1
p

⌋(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
iterations in total to produce an iterate xε such that ‖∇1

xf(xε)‖ ≤ ε, where σmax is given
by (2.17) and where

κs
def
=

p+ 1

η1σmin
(L+ θ + σmax)

p+1
p .

Proof. At each successful iteration before termination, we have that

f(xk)− f(xk + sk) ≥ η1(Tp(xk, 0)− Tp(xk, sk))

≥ η1σmin
p+ 1 ‖sk‖

p+1

≥ η1σmin

(p+ 1)(L+ θ + σk)
p+1
p

‖∇1
xf(xk + sk)‖

p+1
p

≥ η1σmin

(p+ 1)(L+ θ + σmax)
p+1
p

ε
p+1
p ,

where we used (2.14), (2.16), (2.15), (2.19), (2.17) and the fact that ‖∇1
xf(xk+sk)‖ ≥ ε be-

fore termination. Thus we deduce that, for successful iterations and as long as termination
does not occur,

f(x0)− f(xk+1) =
∑
j∈Sk

[f(xj)− f(xj + sj)] ≥
|Sk|
κs

ε
p+1
p ,

from which the desired bound on the number of successful iterations follows. Lemma 2.4
is then invoked to compute the upper bound on the total number of iterations. 2

The complexity bound of Theorem 2.5 can also be stated as the fact that, for a p times
continuously differentiable objective function with Lipschitz continuous p-th derivative, the
global rate of convergence for the gradient’s norm is O(k−p/(p+1)).



Birgin, Gardenghi, Mart́ınez, Santos, Toint — Complexity with high-order models 8

3 Final comments

We have shown that, under suitable smoothness assumptions, an ε-approximate stationary
point must be found by Algorithm 1 in at most O(ε−(p+1)/p) iterations and function evalua-
tions. This extension of results known for p = 1 and p = 2 to arbitrary p ≥ 1 is made possible
by the introduction of two main innovations: weaker termination conditions on the model
minimization subproblem (no global optimization is required at all) and a reformulation of
the ratio of achieved versus predicted decreases where the model is limited to the Taylor
approximation. Of course, each iteration of the proposed algorithm requires the approximate
minimization of a typically nonconvex regularized p-th order model but this minimization
does not involve additional computation of the objective function of the original problem or
of its derivatives, and therefore its cost does not affect the evaluation complexity of Algo-
rithm 1. What numerical procedure is best for this task is beyond the scope of the present
note (for instance, one might think of applying an efficient first-order method on the model).

Once this paper was submitted, the authors became aware of the interesting contribution
by Dussault [11] where the decrease measure (2.14) is also used to analyse a framework uni-
fying the complexity analysis of the cubic regularization algorithm and trust-region methods.

It is of course interesting to consider if the extensions of the theories developed for the first-
and second-order cubic regularization methods for second-order optimality [8] or convexly
constrained problems [7] can be extended to higher-order regularization approaches. We also
note that Cartis et al. showed in [6] that a worst-case evaluation complexity of order O(ε−3/2)
is optimal for a large class of second-order methods applied on twice continuously differentiable
problems with Hölder continuous Hessians. The generalization of this optimality result for
p > 2 is also an open question.

Whether the approach presented here has practical implications remains to be seen, since
the approximate model minimization could be costly even if computation of f is avoided, and
computing p derivatives for p > 2 may often be out of reach.

We conclude this paper by mentioning a simple extension which we anticipate could be
useful in other contexts. We may, instead of minimizing f(x), split the objective function
into two parts and consider minimizing Φ(x) = h(x) + f(x) where h is bounded below and
continuously differentiable. In this case, we then replace the model defined by (2.8) by
m(x, s, σ) = h(x + s) + Tp(x, s) + σ‖s‖p+1/(p + 1) and, provided we are ready to (approxi-
mately) minimize this augmented model in Step 2 of the algorithm, the above analysis remains
unchanged. There are many possible interesting choices for h(x): in the context of optimiza-
tion with non-negative variables, a possibility is, for example, to choose h(x) = [max(x, 0)]2

as a reformulation of the constraint x ≥ 0. What part of the objective function is “easy”
enough to be included in the model m(x, s, σ) explicitly and which part is better included
using a Taylor series approximation may depend on the problem at hand, but it is interesting
to note that the evaluation-complexity bound presented in Theorem 2.5 is unaffected.
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