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Abstract

The problem of covering a two-dimensional bounded set with a fixed number of minimum-
radius identical balls is studied in the present work. An asymptotic expansion and bounds
on the optimal radius as the number of balls goes to infinity are obtained for a certain class
of nonsmooth domains. The proof is based on the approximation of the set to be covered by
hexagonal honeycombs, and on the thinnest covering property of the regular hexagonal lattice
arrangement in the whole plane. The dependence of the optimal radius on the number of
balls is also investigated numerically using a shape optimization approach, and theoretical and
numerical convergence rates are compared. An initial point construction strategy is introduced
which, in the context of a multi-start method, finds good quality solutions to the problem under
consideration. Extensive numerical experiments with a variety of polygonal regions and regular
polygons illustrate the introduced approach.

Keywords: Covering with balls, asymptotic bounds, shape optimization, numerical optimiza-
tion.

AMS subject classification: 49Q10, 49J52, 49Q12

1 Introduction

The problems of covering bounded sets or the whole space with balls, in any dimension, have been
extensively studied in the literature. A mathematical investigation of such a problem seems to
appear for the first time in a paper of Neville in 1915 [30], where he illustrates a numerical method
for solving systems of nonlinear equations with the problem of covering a disc by five smaller discs.
Kershner [24] pioneered the topic in 1939, providing an asymptotic result on the smallest number
of discs of fixed radius r that are necessary to cover an arbitrary region of the plane. This was
followed by a series of works on lattice coverings starting from the paper of Fejes Tóth in 1948 [19],
showing in particular that the disc is the least economical symmetrical convex plane set, from the
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point of view of lattice coverings. Results of a similar nature were provided in 1952 by Bambah
and Rogers [3] using a different method, including the problem of covering a convex set with
convex sets. In 1950, Fáry studied lattice coverings with a plane convex set that is not necessarily
symmetrical [18]. In 1954, Bambah studied thinnest lattice coverings by three-dimensional equal
spheres [2]. Extensive work on the covering of a disc by smaller discs was done by Kahn Jr. [39]
in 1962. In his work, approximating the area covered by a given configuration, Kahn Jr. set out
to extensively test different optimization algorithms available. In a way, it is possible to say that
Kahn Jr.’s work was a precursor to the many subsequent works that were devoted to the covering
problem with the help of computer-aided strategies.

Proven optimal solutions for covering a unit-sided equilateral triangle with up to six identical
discs were presented in [27], using simple plane geometry arguments. Another way to prove opti-
mality of a solution is to show that it meets a known lower bound. A lower bound coming from
known optimal solutions of the packing problem (known as the dual of the covering problem) is
mentioned in [28, §4]. However, proven optimal solutions of the packing problem can also be cal-
culated only for problems with few balls or specific symmetries, using plane geometry arguments.
In this way, the optimality of some few-balls covering solutions has been proven. In the general
case, in the last decades, a variety of computer-aided strategies were used to find presumably good
quality solutions; see [5, 8, 9, 10, 20, 27, 28, 29, 31, 32]. As computational power increases and
more efficient numerical methods emerge, covering problems with a large number of discs can be
solved numerically. On the one hand, numerical experiments are then useful to gain insight and to
verify properties of the solutions, such as the dependence of the optimal radius r∗(m) and balls’
centers on the number of balls m used for the covering. On the other hand, theoretical properties
of the solutions help to limit the distance of a numerically calculated solution to an (unknown)
optimal solution.

Among the properties of optimal coverings that can be investigated, understanding the be-
haviour of r∗(m) as m → +∞ is of particular interest. The thinnest covering of the plane is
achieved by arranging the discs’ centers in a regular hexagonal lattice; see [15, Ch.2,p.32]. Thus,
it is expected that, when covering an arbitrary given bounded set A, the optimal configuration
of the discs’ centers converges, in some sense, to such a regular hexagonal lattice as m → +∞.

This allows in particular to obtain limm→∞ r
∗(m)

√
m =

[
2 Vol(A)/3

√
3
]1/2

, where Vol(A) is the
area of A. These properties are observed numerically, and a similar asymptotic result was proved
by Kershner [24] for the minimal number of identical discs with given radius required to cover
an arbitrary bounded set. Kershner also provided lower and upper bounds for the covering of
rectangles that was the basis for obtaining his asymptotic result; these bounds were improved by
Verblunksy [37] for the particular case of a square of size σ covered by discs of unit radius and
for sufficiently large σ. Various asymptotic results have also been obtained for similar problems
such as the problem of seeking a convex set with maximal area that a given number of discs of
fixed radius can cover. In this context, an important result is the Fejes-Tóth inequality, where an
estimate for the area of a convex domain covered by m unit discs is given, see [13, Thm. 5.2.2]; see
also [4, 6] for the covering of the convex hull of the discs’ centers. More recently, [21] presented a
lower bound on the sum of radii of small balls covering a unit d-dimensional Euclidean ball. The
work also gives an upper bound on the sum of powers of the balls’ radii.

Even though lower and upper bounds for r∗(m) are available for specific geometries such as
rectangles and spheres, refined asymptotic expansions that improve the results of Kershner for
arbitrary domains seem to be lacking. In this paper we contribute to this task by providing an
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asymptotic expansion of r∗(m) as m → +∞ for a relatively large class of sets to be covered. We
start by discussing the relation between the problem considered by Kershner of finding the minimal
number of identical discs with given radius required to cover an arbitrary bounded set and the prob-

lem of finding bounds for r∗(m). We show indeed that limm→∞ r
∗(m)

√
m =

[
2 Vol(A)/3

√
3
]1/2

,

and in addition we prove upper and lower bounds of order 2 Per(∂A)/(3
√

3m) for the next term of
the asymptotic expansion of r∗(m). The methodology consists in trapping A between two hexag-
onal honeycombs with m cells, based on a regular hexagonal lattice arrangement of variable size,
that converge in some sense towards A, and to use the thinnest covering property of the regular
hexagonal lattice arrangement in the whole plane. The methodology of Kershner and Verblunksy
to obtain the upper bound is also relying on a trapping of A, but using sets defined as unions of
rectangles of different sizes. For the lower bounds, they use a different technique based on Voronoi
cells.

From a practical point of view, we consider the shape optimization framework introduced in [9,
10] to produce covers of polygonal sets. In [9, 10], using shape optimization techniques, first- and
second-order derivatives of a nonlinear programming (NLP) model of the problem were computed.
With these tools, an NLP method was combined with a rough random multi-start strategy to
compute good quality coverings of varied polygonal sets. In the present work, based on the obtained
optimal solutions’ theoretical properties, we introduce a strategy to construct randomized lattice-
like starting points for the optimization process. In this way, we make an enhancement of the multi-
start strategy, which ends up needing many fewer attempts to find good quality solutions. This
computational tool is then used to assert the optimal solutions’ theoretical properties. Additionally,
solutions with up to one hundred balls for regular polygons are presented as an illustration.

The rest of this paper is organized as follows. In Section 2, the minimization problem based
on a shape optimization approach is formulated, and the formulas for the first- and second-order
derivatives of the constraint are given. In Section 3, the asymptotic expansion and bounds on
r∗(m) are given as m→∞ and compared with the results of Kershner. In Section 4, a methodol-
ogy for the heuristic generation of lattice-based initial guesses is described. In Section 5, numerical
experiments are conducted for various types of domains A. The theoretical rate of convergence of
the bounds are compared to the numerical rate of convergence. Conclusions and lines for future
research are given in the last section.

Notation: Given x, y ∈ Rn, x · y = xT y ∈ R, x⊗ y = xyT ∈ Rn×n and ‖x‖ denotes the Euclidean
norm. Given an open set S, S denotes its closure, Sc its complementary, and ∂S = S \S denotes its
boundary. For a two-dimensional set S, Vol(S) denotes its area, Per(∂S) its perimeter and d(x, S)
the distance of a point x to S. For a closed set S, intS denotes its interior. For a finite set S, |S|
denotes its cardinal.

2 The shape optimization problem

Let A ⊂ R2 be an open set and Ω(x, r) = ∪mi=1B(xi, r), where B(xi, r) for i = 1, . . . ,m are open balls
with centers xi ∈ R2 and radii r and x := {xi}mi=1. We consider the problem of covering A using
a fixed number m of balls B(xi, r) with minimum radius r, i.e., we are looking for (x, r) ∈ R2m+1

such that A ⊂ Ω(x, r) with minimum r. The problem can be formulated as

Minimize
(x,r)∈R2m+1

r subject to G(x, r) = 0, (1)
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where

G(x, r) := Vol(A)−Vol(A ∩ Ω(x, r)). (2)

Note that G(x, r) = 0 if and only if A ⊂ Ω(x, r) up to a set of zero measure, i.e., when Ω(x, r)
covers A.

Problem (1,2) was numerically solved in [9, 10] using the first and second derivatives of G, that
were computed using techniques of shape calculus [17, 23, 25, 26, 33] under the following regularity
assumptions.

Assumption 1. The centers {xi}mi=1 satisfy ‖xi − xj‖ /∈ {0, 2r} for 1 ≤ i, j ≤ m, i 6= j and
∂B(xi, r) ∩ ∂B(xj , r) ∩ ∂B(xk, r) = ∅ for all 1 ≤ i, j, k ≤ m with i, j, k pairwise distinct.

Definition 1. Let ω1, ω2 be open subsets of R2. We call ω1 and ω2 compatible if ω1 ∩ ω2 6= ∅, ω1

and ω2 are Lipschitz domains, and the following conditions hold: (i) ω1 ∩ω2 is a Lipschitz domain;
(ii) ∂ω1 ∩ ∂ω2 is finite; (iii) ∂ω1 and ∂ω2 are locally smooth in a neighborhood of ∂ω1 ∩ ∂ω2; (iv)
τ1(x) · ν2(x) 6= 0 for all x ∈ ∂ω1 ∩ ∂ω2, where τ1(x) is a tangent vector to ∂ω1 at x and ν2(x) is a
normal vector to ∂ω2 at x.

Assumption 2. Sets Ω(x, r) and A are compatible.

Under Assumptions 1 and 2 it was shown in [9] that

∇G(x, r) = −
(∫
A1

ν(z) dz, · · · ,
∫
Am

ν(z) dz,

∫
∂Ω(x,r)∩A

dz

)>
, (3)

where
Ai = ∂B(xi, r) ∩ ∂Ω(x, r) ∩A, (4)

and ν(z) ∈ R2, in the ith component of (3), is the outward unit normal vector to Ai at z, for
i = 1, . . . ,m. Furthermore, under the same assumptions, in [10] it was shown that

∇2G(x, r) =

(
∇2

xG(x, r) ∇2
x,rG(x, r)

∇2
x,rG(x, r)> ∇2

rG(x, r)

)
, (5)

where ∇2
xG(x, r) ∈ R2m×2m, ∇2

x,rG(x, r) ∈ R2m, and ∇2
rG(x, r) = ∂2

rG(x, r) ∈ R are described
below.

Each arc in Ai can be represented by a pair of points (v, w), named starting and ending points,
in counter-clockwise direction, i.e., such that the angular coordinates θv and θw of v−xi and w−xi,
respectively, satisfy θv ∈ [0, 2π) and θw ∈ (θv, θv +2π]. If Ai is not a full circle, we denote by Ai the
set of pairs (v, w) that represent the arcs in Ai; otherwise, we define Ai = ∅. For a starting or ending
point z of an arc in Ai, let L(z) = {` ∈ {1, . . . ,m} \ {i} | z ∈ ∂B(x`, r)}, τi(z) be the unitary-norm
tangent vector to ∂B(xi, r) at z (pointing counter-clockwise), νi(z) be the unitary-norm outwards
normal vector to ∂B(xi, r) at z, and ν−i(z) be the unitary-norm outwards normal vector to the set
intersecting ∂B(xi, r) at z (it could be either ∂A or ∂B(x`, r) for ` ∈ L(z)). We say a configuration
(x, r) is non-degenerate if Assumptions 1 and 2 are satisfied in this configuration. This implies that
for every i = 1, . . . ,m, every (v, w) ∈ Ai, and every z ∈ {v, w}, there exists one and only one ν−i(z)
and ν−i(z) · τi(z) 6= 0.
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Assuming (x, r) is non-degenerate we have that ∇2
rG(x, r) in (5) is given by

∇2
rG(x, r) = −Per(∂Ω(x, r) ∩A)

r
−

m∑
i=1

∑
(v,w)∈Ai

s
|L(z)| − ν−i(z) · νi(z)

ν−i(z) · τi(z)

{w

v

, (6)

where, for an arbitrary expression Φ(z), JΦ(z)Kwv := Φ(w)−Φ(v). Matrix ∇2
xG(x, r) in (5) is given

by the 2× 2 diagonal blocks

∂2
xixiG(x, r) =

1

r

∫
Ai

−νi(z)⊗ νi(z) + τi(z)⊗ τi(z) dz+
∑

(v,w)∈Ai

s
ν−i(z) · νi(z)
ν−i(z) · τi(z)

νi(z)⊗ νi(z)
{w

v

(7)

and the 2× 2 off-diagonal blocks

∂2
xix`

G(x, r) =
∑
v∈Ii`

νi(v)⊗ ν`(v)

ν`(v) · τi(v)
−
∑
w∈Oi`

νi(w)⊗ ν`(w)

ν`(w) · τi(w)
, (8)

where Ii` = {v ∈ ∂B(x`, r) | (v, ·) ∈ Ai} and Oi` = {w ∈ ∂B(x`, r) | (·, w) ∈ Ai}. (Note that
Ii` = Oi` = ∅ for all ` 6= i if Ai = ∅.) Finally, array ∇2

x,rG(x, r) in (5) is given by the 2-dimensional
arrays

∂2
xirG(x, r) = −1

r

∫
Ai

νi(z) dz +
∑

(v,w)∈Ai

u

v ν−i(z) · νi(z)
ν−i(z) · τi(z)

νi(z)−
∑
`∈L(z)

νi(z)

τi(z) · ν`(z)

}

~
w

v

. (9)

We conclude this section by mentioning that various singular cases where (x, r) is degenerate
were analyzed in [9, 10]. On the one hand, it was shown that G is often differentiable and in the
few cases where G is not differentiable it is at least Gateaux semidifferentiable. On the other hand,
G is usually not twice differentiable when (x, r) is degenerate, but Gateaux semidifferentiability of
the components of ∇G can often be proven. In any case, it was observed that these differentiability
issues are not detrimental for the numerical algorithms developed in [9, 10], which were consistently
able to find satisfactory solutions even in the most singular cases.

3 Asymptotic expansion of the optimal radius

In this section we provide an asymptotic expansion with respect to m, as m→ +∞, of the optimal
radius r∗(m) solution to problem (1,2). The methodology consists in trapping A between a lower
honeycomb H1 and an upper honeycomb H0, where the honeycombs are unions of m regular
hexagons whose centers belong to a regular hexagonal lattice.

We start by discussing the differences between our results and the results of Kershner [24].
In [24], the problem of estimating the minimum number of identical discs of given radius r that is
required to cover an arbitrary bounded set A ⊂ R2 is considered. This problem seems somehow
dual to the problem that we consider in the present paper, but the two problems are actually
not completely equivalent, at least for arbitrary bounded set A ⊂ R2. We discuss here the main
differences and how the estimates obtained in [24] can be interpreted in the framework of the
minimization problem (1,2).

We start by defining the class S of sets to be covered considered in the present paper. Note
that the sets in S need not be Lipschitz, and may in particular include cracks and cusps.
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Definition 2. Let S be the set of open and bounded sets A ⊂ R2 satisfying

∂A =

k̄⋃
k=1

Γk, k = 1, . . . , k̄, (10)

where Γk is a smooth open or closed arc, k̄ < +∞, and Γk ∩Γj is either empty or composed of one
or two points, for all j 6= k, j, k = 1, . . . , k̄. Here k̄ denotes the number of edges of A.

Let N(r) be the minimal number of identical closed discs with given radius r required to cover
a bounded set A ⊂ R2. The main result of [24] states that

lim
r→0

πr2N(r) =
2π
√

3 Vol(A)

9
. (11)

Since Kershner formulates the problem with closed discs whereas we formulate problem (1,2) with
open discs and open sets A, we assume, for comparison purposes, that the results of Kershner still
hold for A ∈ S, for which we have Vol(A) = Vol(A). Let r∗(m) be the solution to problem (1,2),
viewed as a function of m. Clearly we have r∗(m0) ≥ r∗(m1) if m0 < m1. Indeed, if we have a
covering of A with m0 balls of radius r∗(m0), then we can place m1 −m0 balls of radius r∗(m0)
at random positions to get a covering of A with m1 balls of radius r∗(m0), thus r∗(m1) must be
smaller or equal to r∗(m0).

Now, since we have a covering of A with m balls of radius r∗(m), we must have N(r∗(m)) ≤ m.
Note that, maybe unexpectedly, the case N(r∗(m)) < m may occur, for instance in the case where
A is a union of rings and balls of radius r∗(m) that do not overlap and are sufficiently far apart
from each other. We start with the following intermediary result.

Lemma 1. For A ∈ S we have r∗(m) → 0 as m → ∞, r∗(m) = r∗(f(m)), where f(m) :=
N(r∗(m)), and

lim
m→∞

πr∗(f(m))2f(m) =
2π
√

3 Vol(A)

9
. (12)

Proof. Since A is bounded, let S be the smallest square containing A and let L be the square’s
edge length. We may divide S into b

√
mc2 smaller squares with edge length L/b

√
mc, where b

√
mc

is the largest integer smaller or equal to
√
m. Then we can cover each small square by a disc of

radius
√

2L/(2b
√
mc), and the union of these b

√
mc2 discs, where b

√
mc2 ≤ m, clearly covers S

and hence also A. Thus r∗(m) ≤
√

2L/(2b
√
mc) which shows that r∗(m)→ 0 as m→∞.

On the one hand, since f(m) ≤ m and m 7→ r∗(m) is decreasing, we have r∗(f(m)) ≥ r∗(m). On
the other hand there exists a covering of A with f(m) balls of radius r∗(m), thus r∗(f(m)) ≤ r∗(m).
This proves r∗(m) = r∗(f(m)).

Finally, taking r = r∗(m) in (11), using r∗(m) = r∗(f(m)) and Vol(A) = Vol(A) we get (12).

This implies the following asymptotic result.

Lemma 2. For A ∈ S, the solution to problem (1,2) satisfies

lim inf
m→∞

r∗(m)
√
m =

[
2 Vol(A)

3
√

3

]1/2

. (13)

6



Proof. Since N(r∗(m)) ≤ m, taking r = r∗(m) in (11), using r∗(m)→ 0 as m→∞ and Vol(A) =
Vol(A) we get

lim inf
m→∞

r∗(m)
√
m ≥ lim

m→∞
r∗(m)

√
N(r∗(m)) =

[
2 Vol(A)

3
√

3

]1/2

. (14)

In view of (12) we also have[
2 Vol(A)

3
√

3

]1/2

= lim
m→∞

r∗(f(m))
√
f(m) ≥ lim inf

m→∞
r∗(m)

√
m.

This yields (13).

The lim inf appearing in (13) instead of a simple limit is directly related to the possible case
N(r∗(m)) < m. Such situation may in principle occur for pathological sets A since no regularity
is assumed on A in the paper of Kershner [24], but we expect the condition N(r∗(m)) = m to
be satisfied for domains A with sufficient regularity and m sufficiently large. We show indeed in
Theorem 1 a result similar to (13) for A ∈ S, but with a simple limit instead of a limit inferior,
and we provide asymptotic bounds for the remainder. Thus, our main result yields a more precise
asymptotic expansion of r∗(m) with respect to m, albeit for a smaller class of sets A. We also
conclude that problem (1,2) and Kershner’s problem of determining N(r) are similar but not
exactly equivalent.

From the methodological point of view, Kershner also uses a trapping of the set A between
a subset and a supset. The main difference is that his trapping subset and supset are unions of
rectangles, while we use hexagonal honeycombs. In order to deduce lower and upper bounds for the
covering of A, he proves and uses the following lower and upper bounds for the minimal number of
identical discs required to cover a rectangle D:

2π

3
√

3
(Vol(D)− 2πr2) < πr2N(r) <

2π

3
√

3
(Vol(D) + 2rPer(∂D) + 16r2). (15)

The main drawback of this approach is that the shapes and the amount of rectangles required to
define the trapping subset and supset are unknown and seem difficult to control. This allows him
to obtain the asymptotic estimate (11), but the higher-order terms of the lower and upper bounds
for rectangles in (15) are lost in the process. By contrast, in our approach, the advantage of using
hexagonal honeycombs for the trapping sets is that the optimal covering radius is known exactly
and the shape of these honeycombs is easier to control, which allows us to obtain higher-order terms
in the asymptotic expansion of r∗(m).

The optimal radius for coverings of honeycombs based on regular hexagonal lattice can be
obtained using the thinnest covering property of the regular hexagonal lattice arrangement in the
whole plane. We use this property, as well as the fact that the trapping honeycombs converge in
some sense to A as the number m of balls goes to infinity, to obtain estimates on the optimal radius
r∗(m) for (1,2). One technical difficulty along this way is that the honeycombs H0 and H1 need
to be the union of exactly m regular hexagons so that the optimal radii can be compared, which
requires a few adjustments. In order to prove that the upper honeycomb H0 converges to A, we
show that it is contained in a set containing A that converges to A as m → ∞, and whose area
can be estimated as a function of m. A similar procedure is used to obtain the convergence of H1

towards A.
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Before stating the main result of this section, we need a few notations. Introduce the hexagonal
lattice

Lr := {kvr + `wr | (k, `) ∈ Z2} (16)

with vr := r
2(3,
√

3) and wr := r
2(3,−

√
3); see Figure 1.

(0,0)

vr

wr

r

Figure 1: Example of an hexagonal lattice Lr as defined in (16). The picture displays elements
with k and ` ∈ {0, 1, 2} only.

Let Ah = {x ∈ R2 | d(x,A) < h}, then we define

r0(m,h) := arg inf{r ∈ R | |Lr ∩Ah| ≤ m}, (17)

recalling that |Lr ∩ Ah| denotes the cardinal of Lr ∩ Ah. We will sometimes write r0 instead of
r0(m,h) for simplicity.

The plane R2 can be tiled by the following regular hexagons with centers at the points of the
hexagonal lattice Lr:

Pr(z) := {x ∈ R2 | ‖x− z‖ ≤ ‖x− y‖ for all y ∈ Lr}.

For a sublattice L ⊂ Lr we define the honeycomb

H(L) :=
⋃
z∈L

Pr(z). (18)

The main result of this section is the following asymptotic upper and lower bounds on the
optimal radius r∗(m) for the minimization problem (1,2), whose proof is given in Section 3.4.

Theorem 1. Let A ∈ S. There exists m ∈ N with m ≥ 16πk̄/(3
√

3) such that, for all m > m, the
solution r∗(m) to the minimization problem (1,2) satisfies

r∗(m) =

[
2 Vol(A)

3
√

3m

]1/2

+R(m) (19)
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with
R(m) ≤ R(m) ≤ R(m), (20)

where

R(m) := −2 Per(∂A)

3
√

3m
− 8πk̄(2 Vol(A))1/2

(3
√

3m)3/2
, R(m) :=

2µm Per(∂A) + 8πk̄µ2
m(

2 Vol(A)3
√

3m
)1/2 ,

µm :=
2 Per(∂A) + [4 Per(∂A)2 + 2 Vol(A)(3

√
3m− 10πk̄)]1/2

3
√

3m− 16πk̄
. (21)

In addition, the following asymptotic expansion holds as m→∞:

R(m) =
2 Per(∂A)

3
√

3m
+

4 Per(∂A)2 + 16πkVol(A)

(2 Vol(A))1/2(3
√

3m)3/2
+O

(
1

m2

)
. (22)

We conclude this section by comparing (19) in the particular case of a rectangle with the
asymptotic bounds implied by (15). Taking r = r∗(m) in (15) and assuming that N(r∗(m)) = m,
it can be shown that (15) implies the following bounds for sufficiently large m for the problem of
covering a rectangle D:

S(m) < r∗(m) < S(m),

where

S(m) :=

(
2 Vol(D)

3
√

3m+ 4π

)1/2

and S(m) :=
2 Per(∂D) + (4 Per(∂D)2 + 2 Vol(D)(3

√
3m− 32))1/2

(3
√

3m− 32)
.

Asymptotically, we have

S(m) =

[
2 Vol(D)

3
√

3m

]1/2

+
2 Per(∂D)

3
√

3m
+O(m−3/2), (23)

S(m) =

[
2 Vol(D)

3
√

3m

]1/2

− 2π(2 Vol(D))1/2

(3
√

3m)3/2
+O(m−5/2). (24)

On the one hand, we observe that the term 2 Per(∂D)/(3
√

3m) in (23) is the same as the first-order
term in (22), and the next term in (23) is of order m−3/2 as in (22). On the other hand, the
second-order term in (24) is of order m−3/2, whereas the second-order term in the lower bound
of (19) is of order m−1. This better rate may be explained by the fact that the lower bound in
(15) is obtained using a technique based on Voronoi cells which is specific to rectangles; note that
this lower bound was also improved by Verblunksy [37] for the particular case of squares. We also
mention that asymptotic bounds for N(r) have also been obtained in the case of spheres [38].

Thus, we gather from this comparison that Theorem 1 provides a refined asymptotic estimate
for the optimal radius r∗(m) with respect to m, compared with (13), that is valid for the general
class of bounded set A ∈ S. The upper bound in Theorem 1 is similar to the upper bound obtained
by Kershner in [24] for rectangles, whereas the lower bound in Theorem 1 is less sharp than the
lower bound obtained for rectangles. An interesting direction for research would be to determine
whether the bounds (20) are sharp or not for A ∈ S by studying asymptotic expansions for specific
shapes.
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3.1 Upper honeycomb

In this section and in the rest of Section 3 we always assume that A ∈ S. As described above,
the first step is to build an upper honeycomb H(L0) that contains A, is included in Ah+r for
some appropriate values of h and r, and is the union of exactly m polygons, where L0 is an
appropriate subset of Lr. The natural candidates for H(L0) are the honeycombs H(Lr0(m,h) ∩Ah)

and H(Lr0(m,h) ∩ Ah). However, Lemma 3 below implies that H(Lr0(m,h) ∩ Ah) always contains
at least m + 1 polygons, while H(Lr0(m,h) ∩ Ah) contains at most m polygons. Thus, one needs

to choose H(L0) as the honeycomb H(Lr0(m,h) ∩ Â), where Â is some appropriate set satisfying

Ah ⊂ Â ⊂ Ah.

Lemma 3. We have |Lr0(m,h) ∩Ah| ≤ m and |Lr0(m,h) ∩Ah| ≥ m+ 1.

Proof. Clearly we have r0(m,h) > 0. Let {rn}n∈N be a sequence satisfying |Lrn ∩ Ah| ≤ m and
rn → r0(m,h) as n→ +∞. Let Z− ⊂ Z2 be such that

Lr0(m,h) ∩Ah = {k vr0(m,h) + `wr0(m,h) | (k, `) ∈ Z−}.

Since Ah is open, there exists n0 ∈ N such that, for all n ≥ n0,

Lrn ∩Ah = {k vrn + `wrn | (k, `) ∈ Z−}

and |Lrn ∩Ah| = |Lr0(m,h)∩Ah| = |Z−|. Since |Lrn ∩Ah| ≤ m for all n, we get |Lr0(m,h)∩Ah| ≤ m,
which proves the first part of the lemma.

Now let εn > 0 be a sequence converging to 0, then we have |Lr0(m,h)−εn ∩ Ah| ≥ m+ 1 for all
n ∈ N, otherwise there would be a contradiction with (17). We also have

lim
n→∞

Lr0(m,h)−εn ∩Ah ⊂ Lr0(m,h) ∩Ah,

thus
m+ 1 ≤ lim

n→∞
|Lr0(m,h)−εn ∩Ah| ≤ |Lr0(m,h) ∩Ah|

and this proves the second part of the lemma.

In view of the results of Lemma 3 and since we need a set L0 ⊂ Lr satisfying |L0| = m, the
strategy is to complete Lr0(m,h) ∩ Ah with points from the boundary of Ah. Let Z+ ⊂ Z2 be such
that

Lr0(m,h) ∩Ah = {k vr0(m,h) + `wr0(m,h) | (k, `) ∈ Z+}.
In view of Lemma 3 we have |Z−| ≤ m and |Z+| ≥ m + 1. There exists Z ⊂ Z2 such that
Z− ⊂ Z ⊂ Z+ and |Z| = m. We can now introduce the sublattice

L0(m,h) := {k vr0(m,h) + `wr0(m,h) | (k, `) ∈ Z}. (25)

Thus we get
Lr0(m,h) ∩Ah ⊂ L0(m,h) ⊂ Lr0(m,h) ∩Ah (26)

and the sublattice L0(m,h) satisfies indeed the desired property |L0(m,h)| = m. Further, the role
of the upper honeycomb H0 will be played by H(L0(m,h)) for specific values of h.

Now that we have found our candidate H(L0(m,h)) for the upper honeycomb, we need to prove
the inclusions A ⊂ H(L0(m,h)) ⊂ Ah+r0(m,h) which will be key to obtain estimates for the optimal

covering radius r∗(m) of A. We start by proving general inclusions for the honeycombs H(Lr ∩Ah)
and H(Lr ∩Ah).
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Lemma 4. We have H(Lr ∩Ah) ⊂ Ah+r for all r > 0 and h > 0.

Proof. Let x ∈ H(Lr ∩Ah), then d(x,Lr ∩Ah) ≤ r by (18) and there exists z ∈ Lr ∩Ah such that
d(x, z) ≤ r. Since z ∈ Ah, d(z,A) ≤ h by definition of Ah. Thus d(x,A) ≤ d(x, z)+d(z,A) ≤ r+h.
This shows that x ∈ Ah+r and H(Lr ∩Ah) ⊂ Ah+r.

Lemma 5. If h ≥ r then A ⊂ H(Lr ∩Ah).

Proof. It can be checked that the maximal radius of Pr(z) is r. Let x ∈ A, since ∪z∈LrPr(z) is a
tiling of R2, there exists z ∈ Lr such that x ∈ Pr(z) and hence ‖x − z‖ ≤ r ≤ h, which implies
z ∈ Lr ∩ Ah. If z ∈ Lr ∩ ∂Ah, then d(z,A) = h. Thus ‖x − z‖ ≥ h which would imply x ∈ ∂A,
a contradiction with x ∈ A. Hence z ∈ Lr ∩ Ah and then d(x,Lr ∩ Ah) ≤ r, which implies that
A ⊂ H(Lr ∩Ah) since the maximal radius of the hexagon Pr(z) in H(Lr ∩Ah) is r.

Since r0(m,h) depends on h, it is not clear if the condition h ≥ r of Lemma 5 can be satisfied
for r = r0(m,h). The purpose of the following lemma is to show that this condition can actually
be satisfied for m sufficiently large.

Lemma 6. We have the following expansion as m→∞:

0 < µm =

(
2 Vol(A)

3
√

3m

)1/2

+
2 Per(∂A)

3
√

3m
+O

(
1

m3/2

)
, (27)

where µm is defined in (21). In addition, let {hm}m≥0 satisfying hm → 0 as m → +∞ and
hm ≥ µm for all m ≥ 16πk̄/(3

√
3), then there exists m1 ≥ 16πk̄/(3

√
3) such that hm ≥ r0(m,hm)

for all m ≥ m1.

Proof. Let {hm}m≥0 satisfying hm → 0 as m→ +∞. Using Lemma 4 and (26) we get

H(L0(m,hm)) ⊂ H(Lr0(m,hm) ∩Ahm) ⊂ Ahm+r0(m,hm),

hence Vol(H(L0(m,hm))) ≤ Vol(Ahm+r0(m,hm)). By definition (25) of L0(m,h), and since the area

of a regular polygon of maximal radius r0(m,hm) is 3
√

3
2 r0(m,hm), we get

3
√

3

2
r0(m,hm)2m ≤ Vol(Ahm+r0(m,hm)). (28)

Since A is bounded, there exists an open disc B(x̂, r̂) such that A ⊂ B(x̂, r̂) with minimal
radius r̂. We also have Ah ⊂ B(x̂, r̂ + h) and Vol(Ah) ≤ π(r̂ + h)2. Using (28) this yields

3
√

3

2
r0(m,hm)2m ≤ Vol(Ahm+r0(m,hm)) ≤ π(r̂ + hm + r0(m,hm))2. (29)

Since hm → 0, this proves that r0(m,hm)→ 0 as m→ +∞.
Let Γhk := {x ∈ R2 | d(x,Γk) < h} ∩ Ac, where {x ∈ R2 | d(x,Γk) < h} is the so-called tubular

neighborhood of Γk, and Γk ⊂ ∂A is one of the arcs in the decomposition (10). We can show that

Ah ⊂

A ∪
 k̄⋃
k=1

Γhk

 , (30)
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see [9, Theorem 4.1].
Let Vk be the set of endpoints of the arc Γk, then Vk is included in the set of vertices of ∂A and

contains at most two vertices. For sufficiently small h, Γhk satisfies

Γhk ⊂ {x+ ν(x)µ | x ∈ Γk, 0 ≤ µ < h} ∪
⋃
z∈Vk

B(z),

where B(z) is an open ball with center z and radius h, and ν(x) is a normal vector to Γk at x.
Using the results of [22, Chapter 1], there exists h̄k > 0 such that

Vol({x+ ν(x)µ | x ∈ Γk, 0 ≤ µ < h}) = hPer(Γk) ∀h such that 0 < h ≤ h̄k.

Since Vk contains at most two vertices, we obtain Vol(Γhk) ≤ hPer(Γk) + 2πh2 for all h such that

0 < h ≤ h̄k. As there is a finite number of arcs Γk, there exists h̄ > 0 such that
∑k̄

k=1 Vol(Γhk) ≤
hPer(∂A) + 2πk̄h2 for all h such that 0 < h ≤ h̄.

This yields for 0 < h ≤ h̄, using (30),

Vol(Ah) ≤ Vol(A) +

k̄∑
k=1

[hPer(Γk) + 2πh2] = Vol(A) + hPer(∂A) + 2πk̄h2. (31)

Using hm → 0 and r0(m,hm) → 0 as m → ∞, there exists m1 ∈ N such that hm + r0(m,hm) ≤ h̄
for all m ≥ m1. This yields, using (28) and (31),

3
√

3

2
r0(m,hm)2m ≤ Vol(A) + (hm + r0(m,hm)) Per(∂A) + 2πk̄(hm + r0(m,hm))2. (32)

Then, writing (32) in the form α1r
2
0+α2r0+α3 ≤ 0 and studying the variations of the polynomial

α1r
2
0 + α2r0 + α3 we obtain that (32) and r0 > 0 are equivalent to

0 < r0(m,hm) ≤ Per(∂A) + 4πk̄hm +
√

∆m

Cm
, (33)

with Cm := 3
√

3m− 4πk̄ and ∆m := (Per(∂A) + 4πk̄hm)2 + 2Cm
(
Vol(A) + hm Per(∂A) + 2πk̄h2

m

)
,

where we have assumed that Cm > 0, so that ∆m > 0.
Next, we establish a sufficient condition for

Per(∂A) + 4πk̄hm +
√

∆m

Cm
≤ hm (34)

to hold. Inequality (34) may be written as follows:

0 ≤ h2
m[Cm(Cm − 12πk̄)] + hm[−4 Per(∂A)Cm]− 2Cm Vol(A).

Assuming that Cm − 12πk̄ > 0, which is equivalent to m > 16πk̄
3
√

3
, the two roots of this polynomial

in hm are
4 Per(∂A)Cm ± [4C2

m(4 Per(∂A)2 + 2 Vol(A)(Cm − 12πk̄))]1/2

2Cm(Cm − 12πk̄)

12



Since Cm − 12πk̄ > 0, the smallest of these two roots is negative and the largest is positive.
Thus (34) is satisfied if

hm ≥ µm :=
2 Per(∂A) + [4 Per(∂A)2 + 2 Vol(A)(Cm − 12πk̄)]1/2

Cm − 12πk̄
.

Now we provide an asymptotic expansion of µm. We first write µm = µ
(1)
m /µ

(2)
m , where

µ(1)
m :=

2 Per(∂A) + [4 Per(∂A)2 + 2 Vol(A)(Cm − 12πk̄)]1/2

m
and µ(2)

m :=
Cm − 12πk̄

m
.

This yields

µ(1)
m =

2 Per(∂A)

m
+

(
6
√

3 Vol(A)

m

)1/2(
1 +

2 Per(∂A)2

3
√

3 Vol(A)m
− 16πk̄

3
√

3m

)1/2

,

µ(2)
m = 3

√
3

(
1− 16πk̄

3
√

3m

)
,

and then

µ(1)
m =

(
6
√

3 Vol(A)

m

)1/2

+
2 Per(∂A)

m
+O

(
1

m3/2

)
,

1

µ
(2)
m

=
1

3
√

3
+O

(
1

m

)
.

This yields

µm =
µ

(1)
m

µ
(2)
m

=

(
2 Vol(A)

3
√

3m

)1/2

+
2 Per(∂A)

3
√

3m
+O

(
1

m3/2

)
,

which proves the result.

Combining Lemma 5 and Lemma 6 shows that for any sequence {hm}m≥0 converging to 0 and
satisfying hm ≥ µm, we have A ⊂ H(Lr0(m,hm) ∩Ahm) for all m ≥ m1 ≥ 16πk̄/(3

√
3). We are now

ready to state the asymptotic expansion of r0(m,µm) with respect to m.

Theorem 2. There exists m0 ∈ N with m0 ≥ 16πk̄/(3
√

3) such that, for all m ≥ m0, the following
asymptotic expansion holds:

r0(m,µm) =

[
2 Vol(A)

3
√

3m

]1/2

+R0(m)

with

0 ≤ R0(m) ≤ 2µm Per(∂A) + 8πk̄µ2
m(

2 Vol(A)3
√

3m
)1/2 =

2 Per(∂A)

3
√

3m
+

4 Per(∂A)2 + 16πkVol(A)

(2 Vol(A))1/2(3
√

3m)3/2
+O

(
1

m2

)
.
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Proof. Using (26) and Lemmas 4, 5 and 6, we get

A ⊂ H(Lr0(m,µm) ∩Aµm) ⊂ H(L0(m,µm)) ⊂ H(Lr0(m,µm) ∩Aµm) ⊂ Aµm+r0(m,µm)

for m ≥ m1 ≥ 16πk̄/(3
√

3). Thus

Vol(A) ≤ Vol(H(L0(m,µm))) ≤ Vol(Aµm+r0(m,µm)). (35)

Using (28), (31), (35), and µm + r0(m,µm)→ 0 as m→ +∞ yields

0 ≤ 3
√

3

2
r0(m,µm)2m−Vol(A) ≤ (µm + r0(m,µm)) Per(∂A) + 2πk̄(µm + r0(m,µm))2

and

0 ≤ r0(m,µm)2 − 2 Vol(A)

3
√

3m
≤ 2(µm + r0(m,µm)) Per(∂A) + 4πk̄(µm + r0(m,µm))2

3
√

3m
.

Then

0 ≤ r0(m,µm)−
(

2 Vol(A)

3
√

3m

)1/2

≤ R(m,µm) (36)

with

R(m,µm) :=
2(µm + r0(m,µm)) Per(∂A) + 4πk̄(µm + r0(m,µm))2

3
√

3m

(
r0(m,µm) +

(
2 Vol(A)

3
√

3m

)1/2
) .

Using Lemma 6 and (36) we have
(

2 Vol(A)

3
√

3m

)1/2
< r0(m,µm) ≤ µm, this yields

R(m,µm) ≤ 4µm Per(∂A) + 16πk̄µ2
m

6
√

3m
(

2 Vol(A)

3
√

3m

)1/2
=

2µm Per(∂A) + 8πk̄µ2
m(

2 Vol(A)3
√

3m
)1/2 .

Then, using (27) we get, as m→∞,

2µm Per(∂A) + 8πk̄µ2
m(

2 Vol(A)3
√

3m
)1/2 =

2 Per(∂A)

3
√

3m
+

4 Per(∂A)2 + 16πkVol(A)

(2 Vol(A))1/2(3
√

3m)3/2
+O

(
1

m2

)
.

This proves the result.

3.2 Lower honeycomb

In Section 3.1 we have built an upper honeycomb H(L0(m,µm)) that contains A, is included in
Aµm+r0(m,µm), and is the union of exactly m polygons. Following a similar procedure, we now build

a lower honeycomb H(L1), where L1 is a subset of Lr, that is included in A and contains A−h−r
for some appropriate values of h and r, where

A−h := {x ∈ R2 | d(x,Ac) > h}

for h > 0. We also introduce

r1(m,h) := arg inf{r ∈ R | |Lr ∩A−h| ≤ m}, (37)

where |Lr ∩A−h| denotes the cardinal of Lr ∩A−h. We will sometimes write r1 instead of r1(m,h)
for simplicity. We omit the proof of the following result, which is similar to the proof of Lemma 3.
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Lemma 7. We have |Lr1(m,h) ∩A−h| ≤ m and |Lr1(m,h) ∩A−h| ≥ m+ 1.

Since we need a sublattice L1 satisfying |L1| = m, neither Lr1(m,h) ∩ A−h nor Lr1(m,h) ∩ A−h
can play the role of L1 in view of Lemma 7, but we may complete Lr1(m,h) ∩A−h with a few points
from the boundary of A−h to obtain L1. Proceeding as in the definition of L0(m,h) in Section 3.1
we obtain the existence of a sublattice L1(m,h) satisfying

Lr1(m,h) ∩A−h ⊂ L1(m,h) ⊂ Lr1(m,h) ∩A−h (38)

and |L1(m,h)| = m. Further, the role of the lower honeycomb H1 will be played by H(L1(m,h))
for specific values of h.

Now we need to prove the inclusions A−h−r1(m,h) ⊂ H(L1(m,h)) ⊂ A which will be key to
obtain estimates for the optimal covering radius r∗(m). We start by proving general inclusions for
the honeycombs H(Lr ∩A−h) and H(Lr ∩A−h).

Lemma 8. We have H(Lr ∩A−h) ⊂ A if h ≥ r and H(Lr ∩A−h) ⊂ A−h+r if h < r.

Proof. Let x ∈ H(Lr ∩ A−h), then d(x,Lr ∩ A−h) ≤ r and there exists y ∈ Lr ∩ A−h such that
‖x−y‖ ≤ r. Let z ∈ Ac, then ‖y−z‖ ≥ h since y ∈ A−h. If ‖y−z‖ = h, then z ∈ ∂(Ac) = Ac∩A but
this would contradict z ∈ Ac, thus we must have ‖y−z‖ > h. Then, using ‖z−y‖ ≤ ‖z−x‖+‖x−y‖
we get ‖z − x‖ ≥ ‖z − y‖ − ‖x− y‖ > h− r ≥ 0 if h ≥ r. Thus ‖x− z‖ > 0 for all z ∈ Ac if h ≥ r,
which proves H(Lr ∩A−h) ⊂ A.

In the case h < r, if ‖x − y‖ ≤ h, then x ∈ A since y ∈ A−h, and consequently x ∈ A−h+r.
Now if ‖x − y‖ > h, let z be the point on the segment with extremities x and y and such that
‖z − y‖ = h, then we have ‖x− z‖ = ‖x− y‖ − ‖y − z‖ = ‖x− y‖ − h ≤ r − h. Since ‖z − y‖ = h
and y ∈ A−h, we have z ∈ A. Thus d(x,A) ≤ ‖x− z‖ ≤ r − h, and consequently x ∈ A−h+r. This
proves that H(Lr ∩A−h) ⊂ A−h+r if h < r.

Lemma 9. We have A−h−r ⊂ H(Lr ∩A−h) for all r > 0.

Proof. If x ∈ A−h−r then d(x,Ac) > h+ r. Since ∪z∈LrPr(z) is a tiling of R2, there exists z ∈ Lr
such that x ∈ Pr(z) and hence ‖x − z‖ ≤ r. Let y ∈ Ac, then ‖x − y‖ ≥ d(x,Ac) > h + r. Then
h + r < ‖x − y‖ ≤ ‖x − z‖ + ‖z − y‖ ≤ r + ‖z − y‖. Thus ‖z − y‖ > h for all y ∈ Ac, hence
d(z,Ac) > h. Thus z ∈ A−h and z ∈ Lr ∩A−h. Since ‖x− z‖ ≤ r we get x ∈ H(Lr ∩A−h).

In order to prove the lower bound for r∗(m), we will need the inclusion H(Lr1(m,hm)∩A−hm) ⊂ A
from Lemma 8, for some appropriate sequence hm → 0, which requires hm ≥ r1(m,h). Since
r1(m,hm) depends on hm, it is not clear if this condition can be satisfied. The purpose of the
following lemma is to show that it can actually be satisfied for sufficiently large m.

Lemma 10. Let {hm}m≥0 satisfying hm → 0 as m→ +∞ and

hm ≥
(

2 Vol(A)

3
√

3m

)1/2

for all m ≥ 4πk̄
3
√

3
. Then there exists m1 ≥ 4πk̄

3
√

3
such that we have hm ≥ r1(m,hm) for all m ≥ m1.
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Proof. Let {hm}m≥0 satisfying hm → 0 as m→ +∞, using Lemma 8 and (38) we get

H(L1(m,hm)) ⊂ H(Lr1(m,hm) ∩A−hm) ⊂ A if r1(m,hm) ≤ hm

or
H(L1(m,hm)) ⊂ H(Lr1(m,hm) ∩A−hm) ⊂ A−hm+r1(m,hm) if r1(m,hm) > hm.

Thus Vol(H(L1(m,hm))) ≤ Vol(A−hm+r1(m,hm)) if r1(m,hm) > hm or Vol(H(L1(m,hm))) ≤ Vol(A)
if r1(m,hm) ≤ hm.

Considering the definition of the honeycomb H(L1(m,hm)), if r1(m,hm) ≤ hm we get

3
√

3

2
r1(m,hm)2m ≤ Vol(A) (39)

and then

r1(m,hm) ≤
(

2 Vol(A)

3
√

3m

)1/2

.

If r1(m,hm) > hm we get

3
√

3

2
r1(m,hm)2m ≤ Vol(A−hm+r1(m,hm)). (40)

Since A is bounded, there exists an open disc B(x̂, r̂) such that A ⊂ B(x̂, r̂) with minimal radius r̂.
We also have Ah ⊂ B(x̂, r̂ + h) and Vol(Ah) ≤ π(r̂ + h)2 for any h > 0.

Using (39) and (40) this yields

3
√

3

2
r1(m,hm)2m ≤ Vol(A), if r1(m,hm) ≤ hm,

3
√

3

2
r1(m,hm)2m ≤ Vol(A−hm+r1(m,hm)) ≤ π(r̂ − hm + r1(m,hm))2, if r1(m,hm) > hm.

Since hm → 0, this proves that r1(m,hm)→ 0 as m→ +∞.
Using (31) and the fact that −hm+ r1(m,hm)→ 0, there exists m1 ∈ N such that the following

inequality holds for all m ≥ m1 such that r1(m,hm) > hm:

3
√

3

2
r1(m,hm)2m ≤ Vol(A) + (−hm + r1(m,hm)) Per(∂A) + 2πk̄(−hm + r1(m,hm))2. (41)

Further, suppose that m ≥ m1. Writing (41) in the form α1r
2
1 + α2r1 + α3 ≤ 0, and studying the

variations of the polynomial α1r
2
1 +α2r1 +α3 we obtain that (41) and hm < r1(m,hm) is equivalent

to

hm < r1(m,hm) ≤ Per(∂A)− 4πk̄hm +
√

∆m

Cm
, (42)

with Cm := 3
√

3m− 4πk̄ and ∆m := (Per(∂A)− 4πk̄hm)2 + 2Cm
(
Vol(A)− hm Per(∂A) + 2πk̄h2

m

)
,

where we have assumed that Cm > 0 so that ∆m > 0.
Then, (42) implies that an inequality of the form β1h

2
m + β2hm + β3 < 0 should hold. Studying

the variations of the polynomial β1h
2
m + β2hm + β3 we obtain that

0 < hm <

(
2 Vol(A)

3
√

3m

)1/2

(43)
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should also hold. Consequently, if hm ≥ (2 Vol(A)/3
√

3m)1/2 and Cm > 0 hold for all m ≥ m1,
then we must have 0 < r1(m,hm) ≤ hm for all m ≥ m1, otherwise (43) would have to hold for some
m ≥ m1. This proves the result.

Theorem 3. There exists m1 ∈ N with m1 ≥ 4πk̄
3
√

3
such that, for all m ≥ m1, the following

asymptotic expansion holds:

r1(m, ηm) =

[
2 Vol(A)

3
√

3m

]1/2

+R1(m),

with ηm := (2 Vol(A)/3
√

3m)1/2 and

−2 Per(∂A)

3
√

3m
− 8πk̄(2 Vol(A))1/2

(3
√

3m)3/2
≤ R1(m) ≤ 0.

Proof. The proof is similar to the proof of Theorem 2 so we only explain the main differences here.
Using (38) and Lemmas 8, 9 and 10 we have

A−ηm−r1(m,ηm) ⊂ H(Lr1(m,ηm) ∩A−ηm) ⊂ H(L1(m, ηm)) ⊂ H(Lr1(m,ηm) ∩A−ηm) ⊂ A

for m ≥ m1. Thus

Vol(A−ηm−r1(m,ηm)) ≤ Vol(H(L1(m, ηm))) ≤ Vol(A). (44)

Let Γhk := {x ∈ R2 | d(x,Γk) < h}∩A where Γk ⊂ ∂A is one of the arcs in the decomposition (10).
We show that

A \

 k̄⋃
k=1

Γhk

 ⊂ A−h. (45)

Indeed, let x ∈ A \
(⋃k̄

k=1 Γhk

)
and suppose that d(x,Ac) ≤ h, then d(x, ∂A) ≤ h and d(x,Γk) ≤ h

for some k ∈ {1, . . . , k̄}, which implies x ∈ Γhk , a contradiction.
In a similar way as in the proof of Lemma 6, we can prove that there exists h̄ > 0 such that∑k̄
k=1 Vol(Γhk) ≤ hPer(∂A) + 2πk̄h2 for all h such that 0 < h ≤ h̄. Then, for sufficiently small h we

get

Vol

A \
 k̄⋃
k=1

Γhk

 ≥ Vol(A)−
k̄∑
k=1

Vol(Γhk) ≥ Vol(A)− hPer(∂A)− 2πk̄h2. (46)

This yields, for sufficiently large m, using (44), (45), (46) and ηm + r1(m, ηm)→ 0 as m→∞,

−(ηm + r1(m, ηm)) Per(∂A)− 2πk̄(ηm + r1(m, ηm))2 ≤ 3
√

3

2
r1(m, ηm)2m−Vol(A) ≤ 0

and then

R(m, ηm) ≤ r1(m, ηm)−
(

2 Vol(A)

3
√

3m

)1/2

≤ 0 (47)
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with

R(m, ηm) :=
−2(ηm + r1(m, ηm)) Per(∂A)− 4πk̄(ηm + r1(m, ηm))2

3
√

3m

(
r1(m, ηm) +

(
2 Vol(A)

3
√

3m

)1/2
)

=
−2 Per(∂A)− 4πk̄(ηm + r1(m, ηm))

3
√

3
.

Using (47) we get

R(m, ηm) ≥ −2 Per(∂A)

3
√

3m
− 8πk̄ηm

3
√

3m
= −2 Per(∂A)

3
√

3m
− 8πk̄(2 Vol(A))1/2

(3
√

3m)3/2
. (48)

This yields the result.

3.3 Asymptotic expansion of the optimal radius

In this section we show that the unique optimal covering of a honeycomb is obtained by covering
each regular hexagon with a ball of radius equal to the maximal radius of the hexagon. For a set
C ⊂ R2 and λ > 0, define λC := {λx | x ∈ C} and the translate y + C := {y + x | x ∈ C} of C.
Let X be a discrete set of points in R2 and K a convex set, then K+X := {x+ y | x ∈ X, y ∈ K}
is a translative covering of R2 if K + X = R2. Let S ⊂ R2 be the unit square. When K + X is a
covering of R2, we call

Θ(K, X) := lim
λ→∞

|λS ∩X|Vol(K)

Vol(λS)

the density of the covering, if the limit exists. Alternatively, in the definition of Θ(K, X) one can
replace the unit square S by any convex domain C, i.e.,

Θ(K, X) = lim
λ→∞

|λC ∩X|Vol(K)

Vol(λC)
, (49)

since any convex domain can be arbitrarily approximated by the union of a sequence of squares;
see [40, Section 2].

Since the set to be covered in problem (1,2) is supposed to be open, we formulate the following
result for the covering of the interior intH(Lr) of the honeycomb Lr, as H(Lr) is defined as a
closed set.

Theorem 4. Let Lr ⊂ Lr be a sublattice satisfying |Lr| = m. Then the unique solution to the
minimization problem

Minimize
(x,r)∈R2m+1

r subject to Ĝ(x, r) = 0,

where Ĝ(x, r) := Vol(intH(Lr))−Vol(intH(Lr)∩Ω(x, r)), is given by B(0, r)+Lr = ∪z∈LrB(z, r).

Proof. Clearly, the set B(0, r) + Lr = ∪z∈LrB(z, r) is a covering of intH(Lr), so we just need to
prove that this covering is optimal and unique. Suppose that there exists a discrete set Λ with
|Λ| = m such that B(0, s) + Λ, for some s ≤ r, is a covering of intH(Lr). If s < r, then we must
have Λ 6= Ls, since B(0, s) + Ls can not be a covering of intH(Lr), and if s = r we should also
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suppose Λ 6= Ls, thus we suppose that Λ 6= Ls in any case. Since s ≤ r, the set B(0, r) + Λ is also
a covering of intH(Lr).

For p ∈ N and Z2
p := {(i, j) ∈ Z2 | |i| ≤ p, |j| ≤ p}, introduce the sublattice

L̂p := {kvr + `wr | (k, `) ∈ Z2
p} ⊂ Lr.

Clearly, there exists p ∈ N such that Lr ⊂ L̂p. Further, there exists a tiling of Lr by a disjoint

union of translates of L̂p, indeed we have Lr = Y + L̂p where Y := {yij | (i, j) ∈ Z2}, yij :=

i(2p+ 1)vr + j(2p+ 1)wr, and {yij + L̂p} ∩ {yk` + L̂p} = ∅ for all (i, j) 6= (k, `).

Then B(0, r) + Λ ∪ (L̂p \ Lr) is a covering of intH(L̂p) since B(0, r) + L̂p \ Lr is a covering of

intH(L̂p \ Lr) and B(0, r) + Λ is a covering of intH(Lr). Let us define

X := Y + Λ ∪ (L̂p \ Lr).

Then B(0, r)+X is a covering of intH(Y +L̂p) = intH(Lr) = R2. Defining Yn := {yij | (i, j) ∈ Z2
n},

the honeycomb intH(Yn + L̂p) can be approximated by the union of a sequence of squares, thus,
in view of (49), the density of the covering B(0, r) +X can be computed as

Θ(B(0, r), X) = lim
n→∞

|H(Yn + L̂p) ∩X|Vol(B(0, r))

Vol(H(Yn + L̂p))

= lim
n→∞

(2n+ 1)2πr2|Λ ∪ L̂p \ Lr|
(2n+ 1)2(2p+ 1)23

√
3r2/2

≤ 2π

3
√

3
,

where we have used |Λ ∪ (L̂p \ Lr)| ≤ m + (2p + 1)2 − m = (2p + 1)2, considering the fact that

Λ ∩ (L̂p \ Lr) may be nonempty. However, it is well-known that

Θ(B(0, r)) = inf
X

Θ(B(0, r),X ) =
2π

3
√

3

and that this bound is attained only when the centers of the discs are arranged in a regular
hexagonal lattice, see [15, Chapter 2, p. 32]. The set X is not a regular hexagonal lattice since
Λ 6= Lr. Thus we have obtained a contradiction, which means that Λ does not exist. Thus the
covering B(0, r) + Lr is indeed optimal and unique.

3.4 Proof of Theorem 1

We have shown in Theorem 2 that A ⊂ H(L0(m,µm)) for m ≥ m0 with m0 ≥ 16πk̄
3
√

3
, which implies

A ⊂ intH(L0(m,µm)) since A is open. Thus any covering of intH(L0(m,µm)) also covers A.
According to Theorem 4, the optimal covering of intH(L0(m,µm)) is given by B(z, r0(m,µm)) +
L0(m,µm), this shows that r∗(m) ≤ r0(m,µm).

We have also shown in Theorem 3 that H(L1(m, ηm)) ⊂ A for m ≥ m1 with m1 ≥ 4πk̄
3
√

3
.

Since A ⊂ Ω(x∗(m), r∗(m)), where (x∗(m), r∗(m)) is a solution of (1,2), we also have A ⊂
Ω(x∗(m), r∗(m)), hence H(L1(m, ηm)) ⊂ Ω(x∗(m), r∗(m)) and

intH(L1(m, ηm)) ⊂ int Ω(x∗(m), r∗(m)).

19



This yields, in view of the definition of Ĝ(x, r) in Theorem 4,

Ĝ(x∗(m), r∗(m)) = Vol(intH(L1(m, ηm)))−Vol(intH(L1(m, ηm)) ∩ Ω(x∗(m), r∗(m)))

= Vol(intH(L1(m, ηm)))−Vol(intH(L1(m, ηm)) ∩ int Ω(x∗(m), r∗(m)))

= 0.

Then, according to Theorem 4, the covering of intH(L1(m, ηm)) given byB(0, r1(m, ηm))+L1(m, ηm)
is optimal, this shows that r1(m, ηm) ≤ r∗(m).

Thus we have shown[
2 Vol(A)

3
√

3m

]1/2

+R1(m) = r1(m, ηm) ≤ r∗(m) ≤ r0(m,µm) =

[
2 Vol(A)

3
√

3m

]1/2

+R0(m).

Using Theorems 2 and 3 we obtain (19). Finally, choosing m := max{m0,m1}, where m0,m1 are
given in Theorems 2 and 3, we obtain (20).

4 Heuristic generation of lattice-based initial guesses

The covering problem was formulated in (1,2) as a nonlinear programming problem that has a
very large number of stationary points, most of which do not represent solutions to the covering
problem. In [9, 10], a local minimization method was combined with a multi-start technique to
increase the chance of finding a global solution to the problem. The way of generating starting
points was simple and did not make use of problem-specific and observable features in the solutions
found. As a consequence, a large number of local minimizations were needed to find good quality
solutions.

In this section, two characteristics of the solutions are explored in order to develop a method
to generate better quality random starting points. On the one hand, when the number of balls is
large, in a solution, the balls in the interior of the region A to be covered tend to be organized in
the form of an hexagonal lattice, as demonstrated in Section 3. On the other hand, when a ball
does not intersect the region A, the partial derivatives relative to its center are null. Thus, if a ball
does not intersect A in the initial solution, unless throughout the optimization process the radius
increases and causes the ball to intersect A, the ball will remain where it is, not contributing to
the final covering. With fewer balls contributing, the solution found tends to be sub-optimal.

We describe below a way to generate lattice-like initial solutions. The general idea is to cover
the region A with m balls whose arrangement resembles that of a hexagonal lattice. The conditions
are that: (a) there are exactly m balls, (b) there is no ball having empty intersection with A, and
(c) the balls cover A in a “minimally reasonable way”.

Given m ≥ 1 and κ ∈ (0, 1], we say that r > 0 makes the lattice Lr to be (m,κ)-admissible
(as a lattice able to produce a useful initial guess for the optimization process) if there exists a
displacement d ∈ R2 and a rotation angle θ such that

|C(Lr, d, θ)| ≥ m, (50)

where

C(Lr, d, θ) :=

{
x ∈ R2

∣∣∣ x = d+Rθ c, c ∈ Lr, and
Vol(B(x, r) ∩A)

Vol(B(x, r))
≥ κ

}
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and

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

In other words, given a displacement d and a rotation angle θ, a point d+Rθ c with c ∈ Lr is part
of C(Lr, d, θ) if at least 100%×κ of the ball of radius r centered at d+Rθ c covers A. Accordingly,
roughly speaking, being (m,κ)-admissible means that the lattice Lr can be associated with at
least m balls that are “useful” to cover A. Regardless of d and θ, if r is sufficiently large, we have
|C(Lr, d, θ)| ≈ 1 and Lr probably inadmissible; while if r is sufficiently small we have |C(Lr, d, θ)|
large and Lr certainly admissible. Given m and κ, the interesting r is the largest r that makes Lr
to be (m,κ)-admissible.

Let vbl(A) be the “bottom-left corner” of A defined as the point in A with the lowest ordinate
and, in case of a tie, that with the lowest abscissa. To determine empirically whether r makes Lr to
be (m,κ)-admissible, we draw d ∈ B(vbl(A), r) and θ ∈ [0, π) up to 100 times and, by constructing
C(Lr, d, θ), check whether (50) holds. If we find d and θ such that (50) holds, we say that the
answer is “yes”. Otherwise we say that the answer is “no”. Figure 2 illustrates the output of this
process.

Empirically, we define an interval [rleft, rright] and we obtain by bisection in that interval, the
largest r for which we can show that it makes Lr to be (m,κ)-admissible. We stop the bisection
process when (rright − rleft)/rleft ≤ rε := 10−2. We denote by r̄ the r found and denote by d̄
and θ̄ the displacement and angle that show that Lr̄ is (m,κ)-admissible. Up to this point, we
constructed, as a rotation and translation of a subset of points of the lattice Lr̄, the set C(Lr̄, d̄, θ̄)
with at least m points such that, for all x ∈ C(Lr̄, d̄, θ̄), the ball of center x and radius r̄ uses at
least 100×κ percent of its area to cover A. To complete the construction of an initial guess for the
optimization process, it remains to perturb the points in C(Lr̄, d̄, θ̄) and eliminate some points if
we have more than m.

For each x ∈ C(Lr̄, d̄, θ̄), we compute d(x, ∂A), i.e. its distance to the boundary of A. Let
dmax := maxx∈C(Lr̄,d̄,θ̄) {d(x, ∂A)}. For each x, we consider a perturbation that is inversely propor-
tional to d(x, ∂A)/dmax, i.e. we perturb more the centers near the edges of A and less the x in the
interior of A. Precisely, given 0 ≤ σ1 ≤ σ2 ≤ 1, we define γ(x) := σ1 + (σ2−σ1)(1−d(x, ∂A)/dmax)
and replace x by a random point in the box centered at x with half-side γ(x)r̄. (In the numerical
experiments we arbitrarily considered σ1 = 0.03 and σ2 = 0.15.) With abuse of notation, we con-
tinue to call C(Lr̄, d̄, θ̄) the set of perturbed points. Finally, if we have in C(Lr̄, d̄, θ̄) more than m
elements, we calculate Vol(B(x, r̄)∩A) and eliminate the points x ∈ C(Lr̄, d̄, θ̄) with smaller useful
area.

If we wish to generate ntrial different initial guesses for the problem of covering a region A with
m balls, then we perform the whole procedure described above ntrial times for random values of κ.
In the experiments, we arbitrarily considered values of κ in [0.1, 0.9].

5 Numerical experiments

In this section, we wish to illustrate with numerical experiments (i) the theoretical properties of
optimal solutions introduced in Section 3 and (ii) the heuristic for the generation of initial solutions
introduced in Section 4. Moreover, extensive numerical experiments of covering regular polygons
are presented.
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d

θ

Figure 2: Region A is given by an octagon with its vertices in a unitary-radius ball. In this
example, we consider m = 30, κ = 0.3, and r ≈ 0.215. The figure shows a displacement d ≈
(0.0156,−0.97542)T and an angle θ ≈ 0.35 such that |C(Lr, d, θ)| = m, i.e. d and θ which show
that Lr is (m,κ)-admissible. Balls in the figure are all the balls that intersect A and such that their
centers are rotated and translated elements of Lr. The figure shows in light gray the balls whose
centers belong to C(Lr, d, θ) and with dark gray balls whose centers do not belong C(Lr, d, θ).
Recall that, by definition, to belong to C(Lr, d, θ) a ball must use at least 100 × κ percent of its
area to cover A.

Following [10], the nonlinear programming problem (1,2) is tackled with the Augmented La-
grangian optimization method Algencan [1, 11, 12]. As usual, to find good quality solutions, we use
a multi-start strategy. The procedure as a whole consists of (a) generating random initial points,
(b) using the initial points to solve the problem with Algencan, and (c) reporting the best local
solution obtained as the final solution. Algencan was used with all its default parameters. This
means, in particular, that for all reported solutions (x∗, r∗) it is valid that G(x∗, r∗) ≤ 10−8.

Algencan 4.0, implemented in Fortran 90, is freely available at http://www.ime.usp.br/

~egbirgin/. The constraint G(x, r) defined in (2), as well as its first- and second-order deriva-
tives, were also implemented in Fortran 90; see Algorithms 1, 2, and 3 in [10]. The implementation
considers that the region A to be covered is given by the union of non-overlapping convex poly-
gons A1, . . . , Ap. Implementing the algorithms that computes G and its derivatives requires the
calculation of the Voronoi diagram associated with the balls centers {xi}mi=1, that is calculated with
subroutine dtris2 from Geompack. (In fact, dtris2 provides a Delaunay triangulation from which
the Voronoi diagram is extracted.) The intersection Wij of each Voronoi cell Vi (that is a bounded
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or unbounded polyhedron) and each convex polygon Aj is computed with the Sutherland-Hodgman
algorithm [35]. Finally, the intersection Sij of Wij with the ball B(xi, r) is computed with an adap-
tation of a single iteration of the Sutherland-Hodgman algorithm; see [10]. From these structures,
the values of G and its first- and second-order derivatives at a given point (x, r) are obtained.

Source code necessary to reproduce all numerical experiments presented in this section is avail-
able at https://github.com/johngardenghi/bglcovering. All tests were conducted on a com-
puter with an Intel Core i7-8700 processor and 16GB of RAM memory, running Ubuntu GNU/Linux
(version 20.04.3 LTS). Code was compiled by the GFortran compiler of GCC (version 9.3.0) with
the -O3 optimization directive enabled.

5.1 Verifying theoretical properties

In this section, we first consider the problem of covering an equilateral triangle with its vertices
in a unitary-radius ball considering increasing values of m. For each value of m, a budget of
ntrials = 1000 starting points was considered. If we call r∗i (m) the radius found starting from the
ith starting point, hereafter we use r∗(m) to refer to r∗(m) := min{i=1,...,ntrials}{r

∗
i (m)}. Figure 3

displays r∗(m) along with its lower and upper bounds and its asymptotic upper bound. The figure
shows that numerically computed radii are within their bounds. The relative distance from r∗(m)
to the lower bound gives us a guarantee of the distance to the optimal value. For example, for
m = 200, (r∗(m) − LB(m))/LB(m) ≈ 0.41, where LB(m) = (2 Vol(A)/(3

√
3m))1/2 + R(m); see

Theorem 1. This means that the calculated radius is, in the worst case, 41% larger than the optimal
radius. In the case m = 1000, the distance to the optimum radius is, in the worst case, 13%. For
values of m not greater than 90, these percentages are greater than 100%.

In Figure 4 we compare the theoretical convergence rate 2 Per(∂A)/(3
√

3m) of the upper bound
of |R(m)|, as given in Theorem 1, with the numerical convergence rate of |R(m)|. We observe that
the theoretical and numerical rates are similar. Note that in this particular case, the absolute value
of the remainder |R(m)| is dominated by the positive part of R(m), as the numerical results yield
min{R(m), 0} = 0. This indicates that in the case of the equilateral triangle, the main asymptotic
term in the expansion of R(m) in Theorem 1 could possibly be improved by a multiplicative
constant, while a sharp lower bound could have a higher order than the order m−1 given by
Theorem 1. Nevertheless, since the results of Theorem 1 are valid for a large class of sets A, the
bounds represent a worst-case scenario, hence it is not clear if these bounds can be improved for
this class of sets A.

We further investigate this question by plotting the ratio |R(m)|/(2 Per(∂A)/(3
√

3m)) for four
different sets A in Figure 5. In all four cases, this ratio seems to numerically converge towards a
constant C0 with the approximate values C0 ≈ 0.22 for the pentagon, C0 ≈ 0.21 for the octagon,
and C0 ≈ 0.20 for the sets “Cèsaro Fractal“ and “Non-convex with holes”. This indicates that the
main asymptotic term in the expansion of R(m) in Theorem 1 could possibly be improved by a
multiplicative constant 1 > C0 > 0.22. Additional numerical experiments for other shapes A would
allow to determine a more precise target values for C0, either for a general class of sets A or for
specific shapes, and will be the topic of future investigations.

5.2 Comparison with random initial guesses

In this section, we present experiments to show that lattice-based starting points are more effective
and efficient, to produce good quality solutions, than the random starting points considered in [10].
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Figure 3: Illustration of r∗(m) (presumably close to optimal) best radii computed for an equilateral
triangle and m ∈ {30, 40, . . . , 100, 200, . . . , 1000}, together with its bounds ηm +R(m), ηm +R(m),
and ηm+2 Per(∂A)/(3

√
3m), with ηm = (2 Vol(A)/3

√
3m)1/2 (see Theorem 3). The picture starts at

m = 30 considering that Theorem 1 requires m > m ≥ 16πk̄/(3
√

3) and 16πk̄/(3
√

3) = 16π/
√

3 ≈
29.02 in the case of a triangle (i.e., k̄ = 3). The curve of the lower bound ηm + R(m) starts at
m = 40 because it assumes negative value when m = 30.

For this purpose, we consider the three regions A and the number of balls m ∈ {10, 20, . . . , 100} con-
sidered in [10, Table 1], totaling 30 different experiments. The two ways of generating initial points
were compared for increasing values of budgets, where by “budget” we mean the number ntrials of
different initial points considered in the multi-start procedure. Tables 1, 2, and 3 show the results
for problems “Non-convex with holes”, “Cesàro fractal”, and “Sketch of America”, respectively.
In the tables, results with budget ntrials ∈ {200, 500, 1000, 2000, 5000, 10 000} are shown. For each
value of ntrials and each number of balls m, the tables show the best radius r∗ found when the
lattice-based initial guesses are used. Tables also show the relative gap e(r∗) := (r̄− r∗)/r̄, where r̄
is the best radius found in [10], in which random initial guesses were considered. A positive value
of e(r∗) indicates the radius found in the present work was better (i.e., smaller) than the one found
in [10]. For each r∗, the tables also show which initial guess (between 1 and ntrials) was the one that
made the optimization method to reach r∗. Finally, let nprev

trials and ntrials satisfying nprev
trials < ntrials

be two consecutive budgets in {200, 500, 1000, 2000, 5000, 10 000}; and let r∗prev and r∗ be the as-
sociated best radii found. The tables show the relative improvement i(r∗) = (r∗ − r∗prev)/r∗prev,
non-negative by definition. This improvement reflects how much profitable it was to increase the
budget.

Let us concentrate on the results of Table 1 (Tables 2 and 3 show similar results). In 19 out of
the 60 combinations of ntrials andm, e(r∗) is negative, meaning that the solution found in the present
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Figure 4: Comparison of theoretical convergence rate 2 Per(∂A)/(3
√

3m) of the upper bound of
|R(m)| (see Theorem 1), and the numerical convergence rate of |R(m)|, for the covering of an
equilateral triangle. We observe that the theoretical and numerical rates are similar.

work was worse than the solution found in [10]. However, 18 out these 19 combinations correspond
to m = 10, 20, 30 and only one corresponds to m = 40. This means that, as expected, in the smaller
problems, in which solutions do not exhibit a lattice-like arrangement, using random initial guesses
is better. On the other hand, in the other 41 combinations (out of 60), all corresponding to the larger
instances, the lattice-like initial guesses yield better solutions. In average, solutions were better
for all considered budgets. For the largest considered budget (ntrials = 10 000), improvements i(r∗)
are null for all m. This means that increasing the budget from 5000 to 10 000 did not improve
any result. Therefore, the new approach is able to improve the quality of the solutions found with
random initial guesses for values of m between 50 and 100 using at least half of the effort. For
smaller problems, it seems that random initial guesses are still preferable.

5.3 Covering regular polygons

In this section, we apply the techniques introduced in this paper and in [9, 10] to produce regular
polygon coverings. Coverings of equilateral triangles and squares were already considered in [14, 16,
27, 31] and [16, 28, 32, 34], respectively. Results with m ≤ 9 for the case of equilateral triangles and
m ≤ 12 for the case of squares can be found at https://erich-friedman.github.io/packing/

index.html (accessed on February 9th, 2022). All results with m up to 36 for triangles and m
up to 30 for squares were gathered in [31, 32]. Comparing with them, we assert the quality of the
solutions found by the proposed method. Table 4 shows the results. In the table, r∗ corresponds
to the radii found in the present work, while eabs(r

∗) = (r̄ − r∗) and erel = eabs(r
∗)/r̄ correspond

to the absolute and relative difference to the best radius r̄ obtained using the algorithm in [31, 32],
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Figure 5: Values of the ratio |R(m)|/(2 Per(∂A)/(3
√

3m)) as m grows for four arbitrary problems
considered in this work. In this picture, we can notice that the ratio converges to a constant
C0 that approximately holds 0.22 (Pentagon), 0.21 (Octagon), and 0.20 (both Cesàro Fractal and
Non-convex with holes), which may indicate that we can improve the upper bound R(m) (see
Theorem 1) in a factor of C0 for these particular sets.

respectively (i.e. the values shown in [31, 32, Table 1]). Positive values of e{abs,rel}(r
∗) correspond

to better solutions found with the lattice-based initial guesses. The left side of the table shows that
all 36 differences are positive in the case of triangles, while the right side of the table shows that
differences are positive in 27 out the 30 instances with squares. All positive absolute differences
are of the order of 10−5 or 10−6.

At this point, a clarification regarding the accuracy of the solutions obtained would be ap-
propriate. In Nurmela’s work [31, 32] as well as in the other papers to which it refers, iterative
optimization methods such as the one being used in this paper are used. All these methods gen-
erate a sequence of approximations to a solution and are stopped when some stopping criterion is
satisfied, assuming that they have arrived sufficiently close to the desired solution. The reason-
ableness of the used stopping tolerance depends on the problem, i.e., on the way the feasibility
is measured, the size of the region to be covered and the units of measurement considered. By
that, we mean that getting a positive (or negative) difference of 10−5 does not necessarily mean
that we found a better (or worse) solution. It probably means that the methods were stopped
with slightly different tolerances. The important thing is that, as in previous work, these solutions
can be used to detect the structure of the solution and, with some other method with a higher
convergence rate, if desired, improve its accuracy; see [7, 36]. The idea consists of assembling a
system of nonlinear equations which is then solved with some method for nonlinear systems. The
nonlinear system described in [32] includes constraints stating that the distance from the center of
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m
Up to 200 trials Up to 500 trials Up to 1000 trials

r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗)

10 1.95466310e−01 −3.890e−12 8 – 1.95466310e−01 −3.890e−12 8 0.000e+00 1.95466310e−01 −3.890e−12 8 0.000e+00
20 1.33726730e−01 −7.151e−03 3 – 1.32777211e−01 −1.999e−12 347 7.100e−03 1.32777211e−01 −1.999e−12 347 0.000e+00
30 1.09757874e−01 −1.461e−03 53 – 1.09757874e−01 −1.461e−03 53 0.000e+00 1.09757874e−01 −1.461e−03 53 0.000e+00
40 9.22659297e−02 6.537e−03 9 – 9.22659297e−02 3.267e−03 9 0.000e+00 9.22659297e−02 1.796e−03 9 0.000e+00
50 8.21716544e−02 4.739e−03 76 – 8.21716544e−02 3.303e−03 76 0.000e+00 8.18281777e−02 7.469e−03 606 4.180e−03
60 7.40371358e−02 9.959e−03 159 – 7.40042018e−02 4.927e−03 426 4.448e−04 7.37792389e−02 7.952e−03 542 3.040e−03
70 6.82811133e−02 1.712e−02 131 – 6.82811133e−02 1.635e−02 131 0.000e+00 6.82811133e−02 1.503e−02 131 0.000e+00
80 6.41308713e−02 1.426e−02 180 – 6.37828293e−02 1.961e−02 334 5.427e−03 6.36555134e−02 7.878e−03 723 1.996e−03
90 5.99463942e−02 2.157e−02 154 – 5.99463942e−02 1.470e−02 154 0.000e+00 5.99463942e−02 1.470e−02 154 0.000e+00
100 5.68950205e−02 1.207e−02 106 – 5.67505517e−02 1.081e−02 251 2.539e−03 5.67493227e−02 1.083e−02 875 2.166e−05

Average 7.765e−03 – 7.150e−03 1.551e−03 6.419e−03 9.238e−04

m
Up to 2000 trials Up to 5000 trials Up to 10 000 trials

r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗)

10 1.95466310e−01 −4.034e−12 8 0.000e+00 1.95466310e−01 −4.246e−12 8 0.000e+00 1.95466310e−01 −1.331e−11 8 0.000e+00
20 1.32777211e−01 −1.999e−12 347 0.000e+00 1.32777211e−01 −2.261e−12 347 0.000e+00 1.32777211e−01 −2.261e−12 347 0.000e+00
30 1.09757874e−01 −1.461e−03 53 0.000e+00 1.09757874e−01 −1.461e−03 53 0.000e+00 1.09757874e−01 −2.816e−03 53 0.000e+00
40 9.22659297e−02 1.109e−03 9 0.000e+00 9.21104165e−02 1.685e−03 3384 1.685e−03 9.21104165e−02 −1.245e−11 3384 0.000e+00
50 8.16364785e−02 7.820e−03 1155 2.343e−03 8.15511636e−02 6.197e−03 4147 1.045e−03 8.15511636e−02 6.197e−03 4147 0.000e+00
60 7.37792389e−02 7.952e−03 542 0.000e+00 7.37792389e−02 6.521e−03 542 0.000e+00 7.37792389e−02 2.613e−03 542 0.000e+00
70 6.82811133e−02 1.420e−02 131 0.000e+00 6.82336187e−02 1.046e−02 3715 6.956e−04 6.82336187e−02 1.046e−02 3715 0.000e+00
80 6.36555134e−02 7.878e−03 723 0.000e+00 6.36555134e−02 7.878e−03 723 0.000e+00 6.36555134e−02 6.397e−03 723 0.000e+00
90 5.99463942e−02 1.470e−02 154 0.000e+00 5.99463942e−02 6.619e−03 154 0.000e+00 5.99463942e−02 6.619e−03 154 0.000e+00
100 5.67493227e−02 1.083e−02 875 0.000e+00 5.66690709e−02 9.741e−03 3539 1.414e−03 5.66690709e−02 9.741e−03 3539 0.000e+00

Average 6.302e−03 2.343e−04 4.764e−03 4.840e−04 3.921e−03 0.000e+00

Table 1: Comparison of the best radii found for the problem “Non-convex with holes” when the
initial guesses are random, like in [10], and when the proposed lattice-like initial guesses are con-
sidered.

m
Up to 200 trials Up to 500 trials Up to 1000 trials

r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗)

10 2.12768646e−01 4.190e−06 66 – 2.12768646e−01 −1.096e−12 66 0.000e+00 2.12768646e−01 −1.096e−12 66 0.000e+00
20 1.33268785e−01 −3.580e−10 1 – 1.33268785e−01 −1.502e−09 1 0.000e+00 1.33268785e−01 −1.502e−09 1 0.000e+00
30 1.05235228e−01 4.383e−09 70 – 1.05235228e−01 4.383e−09 70 0.000e+00 1.05235220e−01 8.236e−08 896 7.798e−08
40 9.32071842e−02 9.521e−03 75 – 9.32071842e−02 6.697e−03 75 0.000e+00 9.32071842e−02 6.266e−03 75 0.000e+00
50 8.30039792e−02 1.375e−02 167 – 8.29835509e−02 1.399e−02 257 2.461e−04 8.29835509e−02 9.313e−03 257 0.000e+00
60 7.64998086e−02 2.576e−02 52 – 7.61937155e−02 2.965e−02 291 4.001e−03 7.61937155e−02 2.965e−02 291 0.000e+00
70 7.02452018e−02 1.360e−02 130 – 7.02452018e−02 7.041e−03 130 0.000e+00 7.02452018e−02 7.041e−03 130 0.000e+00
80 6.59479847e−02 1.575e−02 10 – 6.58705734e−02 1.636e−02 276 1.174e−03 6.58705734e−02 1.131e−02 276 0.000e+00
90 6.14009288e−02 2.361e−02 145 – 6.12535832e−02 2.595e−02 204 2.400e−03 6.12535832e−02 2.428e−02 204 0.000e+00
100 5.82836412e−02 1.607e−02 198 – 5.82836412e−02 1.506e−02 198 0.000e+00 5.81992746e−02 1.409e−02 702 1.448e−03

Average 1.686e−03 – 1.639e−03 1.117e−04 1.457e−03 2.068e−05

m
Up to 2000 trials Up to 5000 trials Up to 10 000 trials

r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗)

10 2.12768646e−01 −4.895e−12 66 0.000e+00 2.12768646e−01 −1.089e−11 66 0.000e+00 2.12768646e−01 −5.623e−11 66 0.000e+00
20 1.33268785e−01 −1.502e−09 1 0.000e+00 1.33268785e−01 −9.714e−09 1 0.000e+00 1.33268780e−01 2.177e−08 5210 3.464e−08
30 1.05235220e−01 7.781e−08 896 0.000e+00 1.05231934e−01 3.130e−05 2260 3.122e−05 1.05231921e−01 −9.774e−05 6514 1.280e−07
40 9.32071842e−02 6.266e−03 75 0.000e+00 9.32071842e−02 2.364e−03 75 0.000e+00 9.32071842e−02 2.364e−03 75 0.000e+00
50 8.29832289e−02 3.972e−03 1587 3.880e−06 8.29721218e−02 4.106e−03 2386 1.338e−04 8.29721218e−02 4.106e−03 2386 0.000e+00
60 7.61937155e−02 2.965e−02 291 0.000e+00 7.61417405e−02 2.986e−02 2840 6.821e−04 7.59122527e−02 3.019e−02 6602 3.014e−03
70 7.02368469e−02 7.159e−03 1615 1.189e−04 7.01584274e−02 4.634e−03 3830 1.117e−03 7.01584274e−02 4.287e−03 3830 0.000e+00
80 6.58705734e−02 5.568e−03 276 0.000e+00 6.58308578e−02 6.168e−03 3795 6.029e−04 6.58308578e−02 4.234e−03 3795 0.000e+00
90 6.12378326e−02 1.950e−02 1270 2.571e−04 6.12378326e−02 1.950e−02 1270 0.000e+00 6.12377271e−02 1.160e−02 7366 1.722e−06
100 5.81343527e−02 6.616e−03 1309 1.116e−03 5.80625691e−02 6.900e−03 2795 1.235e−03 5.80625691e−02 6.900e−03 2795 0.000e+00

Average 1.125e−03 2.136e−05 1.051e−03 5.431e−05 9.083e−04 4.308e−05

Table 2: Comparison of the best radii found for the problem “Cesàro fractal” when the initial
guesses are random, like in [10], and when the proposed lattice-like initial guesses are considered.

a ball to certain other points must be equal to r, with r variable but equal for all distances. Those
other points are the points where the ball intersects with two other balls simultaneously, or with
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m
Up to 200 trials Up to 500 trials Up to 1000 trials

r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗)

10 1.11645171e−01 −8.042e−10 15 – 1.11645171e−01 −8.042e−10 15 0.000e+00 1.11645171e−01 −8.244e−03 15 0.000e+00
20 7.08273711e−02 8.325e−03 8 – 7.05661937e−02 3.688e−03 331 3.688e−03 7.05661937e−02 4.287e−11 331 0.000e+00
30 5.72425828e−02 −1.314e−03 96 – 5.69149299e−02 5.903e−04 425 5.724e−03 5.69149299e−02 5.903e−04 425 0.000e+00
40 4.90956074e−02 1.303e−02 130 – 4.90956074e−02 1.303e−02 130 0.000e+00 4.90956074e−02 −9.639e−03 130 0.000e+00
50 4.34368652e−02 1.247e−02 19 – 4.34368652e−02 3.575e−03 19 0.000e+00 4.33225166e−02 6.198e−03 603 2.633e−03
60 3.94093506e−02 1.750e−02 118 – 3.88806601e−02 1.240e−02 207 1.342e−02 3.86923093e−02 1.467e−02 947 4.844e−03
70 3.53960463e−02 2.009e−02 175 – 3.53960463e−02 1.061e−02 175 0.000e+00 3.53960463e−02 5.711e−03 175 0.000e+00
80 3.36138570e−02 1.898e−02 175 – 3.28948275e−02 3.557e−02 325 2.139e−02 3.28948275e−02 2.509e−02 325 0.000e+00
90 3.13138458e−02 3.090e−03 163 – 3.12276358e−02 5.834e−03 206 2.753e−03 3.12276358e−02 2.541e−03 206 0.000e+00
100 2.96369517e−02 6.813e−03 58 – 2.96369517e−02 6.813e−03 58 0.000e+00 2.91721038e−02 1.422e−02 858 1.568e−02

Average 1.414e−03 – 1.316e−03 6.710e−04 7.305e−04 3.309e−04

m
Up to 2000 trials Up to 5000 trials Up to 10 000 trials

r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗) r∗ e(r∗) trial i(r∗)

10 1.11645171e−01 −8.244e−03 15 0.000e+00 1.11645171e−01 −1.287e−02 15 0.000e+00 1.10732305e−01 −4.586e−03 9431 8.176e−03
20 7.05661937e−02 4.287e−11 331 0.000e+00 7.05661937e−02 6.872e−12 331 0.000e+00 7.05661937e−02 6.872e−12 331 0.000e+00
30 5.66536407e−02 5.178e−03 1286 4.591e−03 5.66536407e−02 5.178e−03 1286 0.000e+00 5.66320690e−02 −4.976e−03 6464 3.808e−04
40 4.89710085e−02 −7.077e−03 1153 2.538e−03 4.87387053e−02 −2.299e−03 4764 4.744e−03 4.84156015e−02 1.415e−03 9411 6.629e−03
50 4.29520825e−02 1.470e−02 1361 8.551e−03 4.29520825e−02 3.146e−03 1361 0.000e+00 4.29520825e−02 2.961e−03 1361 0.000e+00
60 3.86923093e−02 3.198e−03 947 0.000e+00 3.86758794e−02 8.700e−04 4113 4.246e−04 3.83522944e−02 8.196e−03 5918 8.367e−03
70 3.51217916e−02 1.112e−02 1713 7.748e−03 3.50628371e−02 1.174e−02 3847 1.679e−03 3.50628371e−02 1.174e−02 3847 0.000e+00
80 3.28948275e−02 1.397e−02 325 0.000e+00 3.28460358e−02 7.986e−03 2604 1.483e−03 3.27661960e−02 8.143e−03 8849 2.431e−03
90 3.10848873e−02 −9.742e−05 1183 4.571e−03 3.09688348e−02 3.636e−03 2425 3.733e−03 3.09688348e−02 3.636e−03 2425 0.000e+00
100 2.91721038e−02 1.422e−02 858 0.000e+00 2.91721038e−02 4.618e−04 858 0.000e+00 2.91721038e−02 4.618e−04 858 0.000e+00

Average 6.709e−04 4.000e−04 2.551e−04 1.723e−04 3.857e−04 3.712e−04

Table 3: Comparison of the best radii found for the problem “Sketch of America” when the initial
guesses are random, like in [10], and when the proposed lattice-like initial guesses are considered.

another ball and an edge of the polygon simultaneously, or with a vertex of the polygon. Nonlinear
systems formulated in this way may not have a single solution, regardless of whether the number
of constraints is less than, equal to, or greater than the number of unknowns. Then, strategies for
including different additional constraints can be explored. Figure 7 illustrates the idea. The figure
corresponds to the solution found for an unitary-side equilateral triangle covered with m = 6 balls
reported in Table 4. The points of contact in the figure were determined as follows. First, for each
pair of balls we calculated the intersection points or determined that there were no intersection
points. Let v be a point at the intersection of two balls. We checked if that point was on the
boundary of the polygon or if it was on the boundary of a third ball. In these two verifications,
we consider a tolerance of 10−4. With the same precision, we checked if a vertex of the polygon
was on the boundary of a ball. In the figure, the contact points are highlighted in colors: blue
points lie in the intersection of three balls, green points are in the intersection of two balls and the
polygon border, and yellow points are the points lying in the intersection of a ball with a polygon
vertex. Red points are the centers of the balls. The constructed topology coincides with the one
reported in [31, Fig.1]. In fact, in all cases except the squares with m ∈ {19, 28, 29}, i.e. 63 out
of 66 instances, the topologies of the solutions found coincide with the ones reported in [31, 32],
disregarding rotations and reflections. Additional details and topologies of all solutions found are
available at https://johngardenghi.github.io/bglcovering/.

Having illustrated the proposed theoretical properties, the usefulness of the suggested initial
points, and the fact that we found solutions matching those already known for small problems
with triangles and squares, we now turn to the final experiment and report solutions with regular
polygons and a larger number of balls. Regular triangles, squares, pentagons, hexagons, heptagons,
octagons, nonagons, decagons, hendecagons, and dodecagons are considered. In all the cases the
polygons are inscribed in a ball of unit radius. All polygons are covered with m balls with m ∈
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(a) m = 50

(b) m = 100

Figure 6: Illustration of some of the solutions found for the three problems in [10] considering a
budget of ntrials = 10 000 trials. In all cases, solutions are better than the ones found in [10].

{10, 20, . . . , 100}. These solutions can be used as a reference for future work. Tables 5, 6, and 7
show the results. In the tables, for each value of m, r∗ represents the best radius found, G(x∗, r∗)
corresponds to the feasibility of the solution found, “trial” is the starting point for which the
best radius was found, “outit” is the number of outer iterations of the augmented Lagrangian
approach, “innit” is the total number of inner iterations (iterations needed to solve the augmented
Lagrangian subproblems), #G, #∇G, and #∇2G are the number of evaluations of the constraint
G and its first- and second-order derivatives, respectively, and “Time” is the CPU time in seconds.
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m
Equilateral triangles [31]

m
Squares [32]

r∗ eabs(r
∗) erel(r

∗) trial r∗ eabs(r
∗) erel(r

∗) trial
1 5.77280145e-01 7.012e-05 1.215e-04 1 1 7.07056804e-01 4.998e-05 7.068e-05 52
2 4.99929876e-01 7.012e-05 1.402e-04 1 2 5.58989521e-01 2.747e-05 4.915e-05 1
3 2.88644062e-01 3.107e-05 1.076e-04 1 3 5.03873696e-01 1.741e-05 3.456e-05 1
4 2.67917424e-01 3.177e-05 1.186e-04 1 4 3.53533297e-01 2.009e-05 5.683e-05 158
5 2.49964913e-01 3.509e-05 1.403e-04 1 5 3.26140886e-01 1.970e-05 6.039e-05 1
6 1.92433472e-01 1.662e-05 8.635e-05 1 6 2.98712470e-01 1.459e-05 4.885e-05 1
7 1.85233921e-01 1.716e-05 9.266e-05 1 7 2.74278938e-01 1.295e-05 4.720e-05 6685
8 1.76974424e-01 1.824e-05 1.031e-04 8 8 2.60287083e-01 1.302e-05 5.003e-05 1
9 1.66646234e-01 2.043e-05 1.226e-04 18 9 2.30625095e-01 1.183e-05 5.130e-05 6547
10 1.44314629e-01 2.294e-05 1.589e-04 6580 10 2.18223057e-01 1.046e-05 4.791e-05 1
11 1.41043082e-01 1.138e-05 8.065e-05 2 11 2.12505241e-01 1.078e-05 5.070e-05 497
12 1.37311665e-01 1.195e-05 8.703e-05 7 12 2.02266887e-01 9.002e-06 4.451e-05 5
13 1.32653114e-01 1.127e-05 8.497e-05 9 13 1.94302602e-01 9.769e-06 5.027e-05 1
14 1.27504793e-01 1.159e-05 9.092e-05 30 14 1.85502119e-01 8.428e-06 4.543e-05 1
15 1.15453819e-01 1.624e-05 1.406e-04 6778 15 1.79653567e-01 8.193e-06 4.560e-05 9
16 1.13704316e-01 8.263e-06 7.266e-05 7 16 1.69419853e-01 7.198e-06 4.249e-05 2
17 1.11384415e-01 9.895e-06 8.883e-05 9804 17 1.65673625e-01 7.304e-06 4.409e-05 4
18 1.09101628e-01 7.317e-06 6.706e-05 74 18 1.60632604e-01 7.059e-06 4.395e-05 3167
19 1.06165942e-01 7.851e-06 7.395e-05 239 19 1.58320209e-01 -4.782e-04 -3.030e-03 3792
20 1.03219240e-01 7.979e-06 7.729e-05 149 20 1.52240763e-01 6.048e-06 3.973e-05 1
21 9.62128149e-02 1.223e-05 1.271e-04 131 21 1.48947735e-01 6.055e-06 4.065e-05 1
22 9.51708356e-02 6.399e-06 6.724e-05 120 22 1.43683119e-01 1.006e-05 7.000e-05 3723
23 9.37681323e-02 6.159e-06 6.568e-05 2 23 1.41238706e-01 6.117e-06 4.330e-05 1
24 9.23477016e-02 6.436e-06 6.969e-05 2 24 1.38293187e-01 9.697e-06 7.011e-05 6
25 9.06121327e-02 6.112e-06 6.745e-05 2963 25 1.33540006e-01 8.700e-06 6.515e-05 6
26 8.87769570e-02 5.968e-06 6.722e-05 5419 26 1.31756013e-01 8.863e-06 6.726e-05 625
27 8.68814406e-02 9.899e-06 1.139e-04 179 27 1.28624755e-01 8.779e-06 6.825e-05 2984
28 8.24689720e-02 9.638e-06 1.169e-04 7481 28 1.27571769e-01 -2.542e-04 -1.997e-03 1923
29 8.17960594e-02 8.754e-06 1.070e-04 128 29 1.25946556e-01 -3.930e-04 -3.131e-03 4
30 8.08744935e-02 8.357e-06 1.033e-04 3 30 1.22029317e-01 7.552e-06 6.188e-05 1
31 7.98887009e-02 8.544e-06 1.069e-04 90
32 7.88420764e-02 8.546e-06 1.084e-04 1545
33 7.76287349e-02 8.387e-06 1.080e-04 2872
34 7.63794431e-02 8.011e-06 1.049e-04 888
35 7.51525099e-02 7.945e-06 1.057e-04 61
36 7.21609144e-02 7.869e-06 1.090e-04 757

Table 4: Comparison of the best radii found for the problem of covering an equilateral triangle and
a square, both with side 1, when the algorithms in [31, 32] are considered and when the proposed
lattice-like initial guesses are considered.

Figures 8, 9, and 10 illustrate the solutions found with m ∈ {10, 50, 100}, respectively. Additional
details and topologies of all solutions found are available at https://johngardenghi.github.io/
bglcovering/.
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Figure 7: Example of how to assemble a nonlinear system by identifying the topology of a solution.
In the example, a unitary-side equilateral triangle covered by m = 6 balls is considered. Red points
correspond to the balls’ centers, blue points lie in the intersection of three balls, green points are
in the intersection of two balls and a triangle side, and yellow points are the points lying in the
intersection of a ball with a triangle vertex.

(a) Triangle (b) Square (c) Pentagon (d) Hexagon (e) Heptagon

(f) Octagon (g) Nonagon (h) Decagon (i) Hendecagon (j) Dodecagon

Figure 8: Illustration of the solution found for the problem of covering regular polygons with m = 10
balls.

6 Final considerations

The present work contributes to the study of lower and upper bounds on the optimal radius in
the problem of covering a set with minimum radius identical balls, for a relatively large class
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(a) Triangle (b) Square (c) Pentagon (d) Hexagon (e) Heptagon

(f) Octagon (g) Nonagon (h) Decagon (i) Hendecagon (j) Dodecagon

Figure 9: Illustration of the solution found for the problem of covering regular polygons with m = 50
balls.

(a) Triangle (b) Square (c) Pentagon (d) Hexagon (e) Heptagon

(f) Octagon (g) Nonagon (h) Decagon (i) Hendecagon (j) Dodecagon

Figure 10: Illustration of the solution found for the problem of covering regular polygons with
m = 100 balls.

of sets to be covered, and to its asymptotic analysis as the number m of balls goes to infinity.
The asymptotic results of Kershner [24], in the problem of estimating the minimum number of
identical discs of given radius r that is required to cover an arbitrary plane bounded set, are also
discussed and compared with our main asymptotic expansion. This work is also a theoretical
and numerical investigation of the relation between coverings based on regular hexagonal lattice
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arrangement, which are optimal when covering the whole plane, and covering of bounded sets with
a finite number of balls. The regular hexagonal lattice arrangement is the key ingredient to obtain
the asymptotic expansion of the optimal radius with respect to m, and is also the basis for the
heuristic generation of initial guesses in our numerical experiments. Using these starting points, a
multi-start optimization method was used to generate coverings of a wide range of regular polygons
with up to 100 balls. Known results for triangles and squares were recovered and new results were
presented.

Several lines for future research naturally arise for the continuation of this work. Assessing
the sharpness of the bounds seems out of reach, as this would require to determine the precise
asymptotic behaviour of the radius for a specific and most likely nonsmooth geometry. Thus,
performing numerical experiments for specific geometries, as was done in the present work, seems
to be the best way to gain insight on the general asymptotic behaviour of the radius, and to
determine relevant objectives for future mathematical investigations.

Improving the bounds for a smaller class of shapes, such as polygons, seems to be a reasonable
research objective. In the case of polygons, our numerical results indicate that the convergence
rate for the lower bound could be improved, while the rate of the upper bound seems to be sharp,
but the constant could be refined. Thus, there is some room for improvements in this particular
case. Generalizing our approach to a larger class of sets to be covered would also be an interesting
problem. In the case of arbitrary domains A, the asymptotic analysis of the radius could be achieved
by covering tubular neighborhoods Aε of A and let the parameter ε → 0. This would require a
more complex asymptotic analysis with two parameters ε and m.

From the methodological point of view, one could also try to refine the approach proposed in this
paper. Since the asymptotic analysis is based on the inclusions A−h ⊂ H1 ⊂ A and A ⊂ H0 ⊂ Ah
where H0, H1 are honeycombs and Ah, A−h converge to A as h → 0, potential improvements of
the estimates could be achieved by determining tighter inclusions. This would require a finer
geometrical analysis of the behaviour of Ω(x∗(m), r∗(m)) in the neighborhood of ∂A.
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m r∗ G(x∗, r∗) trial outit innit #G #∇G #∇2G Time
T

ri
an

gl
e

10 2.49977020e-01 9.2e-09 5510 24 297 4878 499 537 0.15
20 1.78786808e-01 4.1e-09 149 23 178 1641 396 408 0.21
30 1.40084849e-01 9.3e-09 92 22 162 1576 376 382 0.31
40 1.20685149e-01 8.4e-09 416 21 150 1497 358 360 0.42
50 1.07098025e-01 7.7e-09 653 21 169 1793 375 379 0.90
60 9.69870980e-02 7.0e-09 1 21 176 2033 368 386 0.89
70 8.91183837e-02 1.0e-08 1806 21 151 1440 351 361 0.97
80 8.27428405e-02 9.7e-09 1186 23 167 1646 398 397 1.21
90 7.81891689e-02 9.8e-09 124 22 154 1608 361 374 1.29
100 7.40088440e-02 9.4e-09 1047 21 150 1093 351 360 0.90

S
q
u

ar
e

10 3.08571384e-01 6.6e-09 2565 24 187 1520 369 427 0.08
20 2.15303457e-01 3.5e-09 1 22 106 325 320 326 0.09
30 1.72578643e-01 8.8e-09 1 21 98 303 299 308 0.14
40 1.49691784e-01 8.4e-09 52 19 95 285 279 285 0.20
50 1.33506224e-01 7.8e-09 845 21 104 324 310 314 0.27
60 1.19278125e-01 7.2e-09 2 22 117 347 333 337 0.36
70 1.10734524e-01 6.7e-09 10 23 125 528 350 355 0.57
80 1.03299126e-01 9.7e-09 4 20 94 291 287 294 0.46
90 9.64117309e-02 9.3e-09 2 21 108 325 315 318 0.51
100 9.18362926e-02 9.1e-09 11 20 100 318 298 300 0.41

P
en

ta
go

n

10 3.47157834e-01 4.8e-09 7 21 102 311 300 312 0.04
20 2.36699399e-01 3.8e-09 6038 22 115 340 331 335 0.11
30 1.89454524e-01 9.9e-09 1776 21 158 1182 362 368 0.27
40 1.62502626e-01 8.3e-09 19 21 105 333 315 315 0.22
50 1.45008700e-01 7.8e-09 4506 23 176 1681 395 406 0.66
60 1.31534995e-01 7.3e-09 8 21 107 324 314 317 0.37
70 1.21114143e-01 7.0e-09 1151 20 113 429 302 313 0.46
80 1.13185579e-01 6.7e-09 1623 19 96 285 280 286 0.47
90 1.06318158e-01 1.0e-08 36 20 108 312 304 308 0.63
100 1.00531052e-01 9.6e-09 7294 21 104 315 308 314 0.52

H
ex

a
go

n

10 3.60385567e-01 5.2e-09 1 22 104 329 319 324 0.05
20 2.42926722e-01 4.0e-09 32 22 125 378 343 345 0.11
30 1.96015058e-01 9.5e-09 3 21 103 321 309 313 0.14
40 1.68398394e-01 8.6e-09 534 22 181 1758 392 401 0.51
50 1.50160811e-01 7.8e-09 5821 21 140 800 337 350 0.47
60 1.36428612e-01 7.3e-09 4525 21 157 1129 362 367 0.67
70 1.24733832e-01 6.7e-09 1 23 223 1746 368 453 0.74
80 1.16368899e-01 9.7e-09 1 21 104 332 306 314 0.50
90 1.10098066e-01 9.7e-09 121 23 164 1630 389 394 1.39
100 1.04220865e-01 9.4e-09 4264 22 183 1941 393 403 1.36

Table 5: Details of the solutions obtained for the problem (1,2) for regular polygons by the appli-
cation of Algencan.

37



m r∗ G(x∗, r∗) trial outit innit #G #∇G #∇2G Time
H

ep
ta

go
n

10 3.66674709e-01 4.5e-09 9774 22 119 358 337 339 0.05
20 2.52023120e-01 4.0e-09 2229 22 129 384 353 349 0.12
30 2.03987279e-01 9.6e-09 4115 21 166 1489 354 376 0.32
40 1.74410069e-01 8.6e-09 269 21 195 1547 404 405 0.48
50 1.54316526e-01 7.7e-09 2 22 109 332 324 329 0.25
60 1.40423516e-01 7.3e-09 197 21 100 312 306 310 0.35
70 1.29459571e-01 6.8e-09 10 21 125 522 334 335 0.46
80 1.20693169e-01 9.9e-09 1753 22 177 1821 396 397 1.32
90 1.13890081e-01 1.0e-08 625 22 157 1400 369 377 1.28
100 1.07573511e-01 9.4e-09 676 18 93 275 268 273 0.45

O
ct

ag
on

10 3.71068736e-01 5.1e-09 1 22 108 329 323 328 0.07
20 2.55463469e-01 3.9e-09 1 23 138 411 370 368 0.10
30 2.05300348e-01 9.7e-09 1 21 98 307 303 308 0.13
40 1.78141373e-01 8.6e-09 1306 21 163 1723 363 373 0.41
50 1.57924226e-01 7.9e-09 4665 22 160 1429 365 380 0.49
60 1.42441662e-01 7.3e-09 3251 19 102 317 289 292 0.32
70 1.31887850e-01 6.7e-09 632 22 116 351 328 336 0.42
80 1.23510395e-01 9.7e-09 1546 22 129 518 347 349 0.57
90 1.15333106e-01 9.6e-09 7555 21 142 1093 346 352 0.94
100 1.09342373e-01 9.7e-09 2939 22 164 1640 373 384 0.99

N
on

ag
on

10 3.85176628e-01 5.2e-09 1 22 106 334 322 326 0.04
20 2.59174664e-01 3.9e-09 1515 22 143 421 370 363 0.12
30 2.12497351e-01 9.7e-09 1066 20 147 1018 356 347 0.25
40 1.80612723e-01 8.6e-09 90 23 193 1930 412 423 0.54
50 1.59353027e-01 8.0e-09 34 23 174 1712 401 404 0.65
60 1.44330783e-01 7.3e-09 293 19 99 293 285 289 0.31
70 1.33242038e-01 7.1e-09 215 21 115 344 321 325 0.46
80 1.24487543e-01 9.8e-09 629 22 150 1350 364 370 1.04
90 1.17022226e-01 1.0e-08 6086 21 143 1128 349 353 1.10
100 1.10619955e-01 9.6e-09 6878 20 164 1796 358 364 1.20

D
ec

ag
o
n

10 3.81588699e-01 4.4e-09 918 23 129 397 361 359 0.06
20 2.61419395e-01 4.0e-09 601 24 146 552 389 386 0.13
30 2.14184123e-01 9.5e-09 4884 21 158 1290 355 368 0.30
40 1.83010882e-01 8.6e-09 538 21 162 1443 362 372 0.45
50 1.61812154e-01 7.8e-09 7432 22 173 1352 388 393 0.57
60 1.45272987e-01 7.2e-09 58 19 95 301 279 285 0.36
70 1.34006026e-01 6.7e-09 1924 21 115 353 320 325 0.50
80 1.25791279e-01 9.7e-09 685 21 144 1136 347 354 0.97
90 1.17869397e-01 9.8e-09 3498 21 148 1025 358 358 1.15
100 1.11744936e-01 9.6e-09 9 22 200 2498 414 420 1.56

Table 6: Details of the solutions obtained for the problem (1,2) for regular polygons by the appli-
cation of Algencan.
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m r∗ G(x∗, r∗) trial outit innit #G #∇G #∇2G Time

H
en

d
ec

ag
o
n

10 3.84661357e-01 4.4e-09 9710 22 120 372 339 340 0.05
20 2.62677708e-01 4.0e-09 922 24 165 708 407 405 0.15
30 2.15250896e-01 9.5e-09 1304 21 184 1948 394 394 0.38
40 1.84173758e-01 8.5e-09 31 21 148 944 348 358 0.37
50 1.62219728e-01 7.6e-09 4509 21 111 339 311 321 0.30
60 1.46310501e-01 7.3e-09 631 21 101 318 305 311 0.35
70 1.35416461e-01 6.9e-09 2819 21 111 337 321 321 0.48
80 1.26395606e-01 9.9e-09 3588 21 134 958 339 344 0.91
90 1.18066734e-01 9.7e-09 9620 20 107 348 313 307 0.63
100 1.12183055e-01 9.6e-09 5008 20 132 569 329 332 0.65

D
o
d

ec
ag

on

10 3.85525578e-01 4.3e-09 1928 24 142 666 378 382 0.07
20 2.62857990e-01 4.0e-09 419 22 129 382 344 349 0.12
30 2.16895193e-01 9.7e-09 772 21 143 924 350 353 0.26
40 1.84703019e-01 8.4e-09 5 21 111 342 318 321 0.23
50 1.63143643e-01 7.9e-09 3169 21 173 1828 381 383 0.68
60 1.46500536e-01 7.3e-09 408 19 105 311 292 295 0.35
70 1.35802478e-01 6.8e-09 1 21 113 335 317 323 0.38
80 1.26683441e-01 9.5e-09 1487 22 159 1416 366 379 0.91
90 1.18806744e-01 9.8e-09 26 18 90 281 267 270 0.54
100 1.12616779e-01 9.3e-09 52 18 100 302 278 280 0.50

Table 7: Details of the solutions obtained for the problem (1,2) for regular polygons by the appli-
cation of Algencan.
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